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ABSTRACT

DEMARCO, ADAM WARD. Multiscale Characterization of the Probability Density Functions
of Velocity and Temperature Increment Fields. (Under the direction of Dr. Sukanta Basu and
Dr. Russell Philbrick.)

The turbulent motions with the atmospheric boundary layer exist over a wide range of
spatial and temporal scales and are very difficult to characterize. Thus, to explore the behavior
of such complex flow enviroments, it is customary to examine their properties from a statistical
perspective. Utilizing the probability density functions of velocity and temperature increments,
du and 6T, respectively, this work investigates their multiscale behavior to uncover the unique
traits that have yet to be thoroughly studied. Utilizing diverse datasets, including idealized,
wind tunnel experiments, atmospheric turbulence field measurements, multi-year ABL tower
observations, and mesoscale models simulations, this study reveals remarkable similiarities (and
some differences) between the small and larger scale components of the probability density
functions increments fields.

This comprehensive analysis also utilizes a set of statistical distributions to showcase their
ability to capture features of increments probability density functions (pdfs) across multiscale
atmospheric motions. Also, an approach is proposed for estimating their pdfs utilizing the
maximum likelihood estimation (MLE) technique, which has never been conducted utilizing
atmospheric data. Using this approach, we reveal the ability to estimate higher order moments
accurately with a limited sample size, which has been a persistent concern for atmospheric
turbulence research. With the use robust Goodness of Fit (GoF) metrics, we quantitatively
reveal the accuracy of the distributions to the diverse dataset. Through this analysis, it is
shown that the normal inverse Gaussian (NIG) distribution is a prime candidate to be used as
an estimate of the increment pdfs fields. Therefore, using the NIG model and its parameters,
we display the variations in the increments over a range of scales revealing some unique scale-
dependent qualities under various stability and flow conditions. This novel approach can provide

a method of characterizing increment fields with the sole use of only four pdf parameters. Also,



we investigate the capability of the current state-of-the-art mesoscale atmospheric models to
predict the features and highlight the potential for use for future model development. With the
knowledge gained in this study, a number of applications can benefit by using our approach,

including the wind energy and optical wave propagation fields.
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Chapter 1

Introduction

Could I just look at something which
everybody had been looking at for a long
time and find something dramatically
new?

Benoit Mandelbrot (2010)

1.1 Motivation

The Earth’s atmosphere is highly complex with motions spanning across a wide range of spatio-
temporal scales, from the large globally driven circulations to the small-scale turbulent eddies.
The size of these features range from thousands of kilometers to on the order of millimeters and
can occur over a range of weeks to seconds [246]. This extensive range leads to an exorbitant
number of degrees of freedom, making it nearly impossible to accurately predict the changes in
the flow over these scales.

Throughout the years, many scientists have examined the characteristics of turbulence in
order to better understand its behavior and how it evolves. The progress made has brought
forth a vast number of ideas and new approaches to examining turbulent media. However,
due to the randomness and non-linear nature of these flows, to this day, it is still extremely

difficult to fully encompass multi-scale and multi-dimensional motions with the sole use of



first principles (i.e., the Navier-Stokes equations) due to the inability to have a closed-form
solution. In fact, this issue has been coined, by many, as one of the most important unsolved
problems in modern physics [253]. Thus, in the field of fluid dynamics, it is quite customary to
describe the turbulent characteristics with the use of statistics in order to identify similarities
and differences between various flow types (e.g, Reynolds number, boundary conditions, large-
scale forcing, etc.). Another area of turbulence research focuses on identifying the dynamical
structures of turbulence (e.g., vortex elements [148, 195]). Though, for this work, the primary
method of evaluation is geared towards expanding on the former point of view. In fact, in a

highly regarded fundamental turbulence book, Monin and Yaglom (1971, [180]) stated:

“The theory of turbulence by its very nature cannot be other than statistical, i.e.
an individual description of the fields of velocity, pressure, temperature, and other
characteristics of turbulent flow is in principle impossible. Moreover, such description
would not be useful even if possible, since the extremely complicated and irregular
nature of all the fields eliminates the possibility of using exact values of them in any
practical problems...”

Utilizing the techniques and theories addressed in this book, countless efforts, some of
which will be addressed in detail in Chapter 2, were made to identify statistical properties of
various turbulent flows. From an experimental perspective, a number of works strive to uncover
statistical scaling properties and universal behavior. At the heart of this work is the 1-D velocity

(or temperature) increment series, du (or 6T), see Eq. 1.1,

ou(r) = u(z + r) — u(z), (1.1)

where r is the spatial separation (similarly 7 represents temporal separation). It has been shown
that the probability density functions (pdfs) of both velocity and temperature increments, across
a wide spectrum of scales, have very unique and self-similar properties [185, 251, 257], which
are quite different from classical turbulence theory [138].

To illustrate the pdf features, Figure 1.1 shows an example of a normalized velocity incre-

ment pdf from atmospheric measurements (grey symbols) with a Gaussian distribution overlaid.



In many applications, it is customary to assume a Gaussian (or normal) distribution for random
continuous processes. However, from the pdf perspective it becomes clear that there are dis-
tinct differences between what is observed and the normal distribution. For instance, the tails
of the pdf are much heavier (i.e., more extended) for the observed data, indicating that extreme
wind events (i.e., strong wind gusts) have a much higher probability of occurrence compared
to the assumed Gaussian distribution (see black arrow). Predicting this deviation is of great
importance to a number of application, in particular the wind energy industry. Therefore, it is
important to gain a comprehensive understanding into these features over a range of various

time and space scales given the extreme difference observed in Figure 1.1.

-10 . . N E
10 5 0 5
dur-o "

Figure 1.1: Atmospheric normalized velocity increment pdf at (7 = 4 s) overlaid with a Gaus-
sian distribution as indicated with the solid line (adapted from [48]).

Even though a number of works have been dedicated to pdfs of these fields, there is still

no consensus into whether or not these features can be accurately captured by a particular pdf



model. A few studies have shown the ability of pdf models to capture the traits of velocity
and temperature increments (e.g., log-normal [56] and stretched-exponential [64]) from a visual
perspective. However, no study has attempted to provide a quantitative analysis into the quality
of the fits, especially across a wide range of scales. Therefore, this work is devoted to filling
that void. Furthermore, examination of multi-year wind and temperature datasets provides a
unique opportunity to explore the long-term statstical behavior of these fields. Unfortunately,
these extensive datasets have not been utilized in the past for this type of evaluation, thus
this work will be the first to reveal the atmospheric boundary layer (ABL) characteristics of
the wind speed and temperature increment pdfs using such long-term data. Having the ability
to properly characterize and estimate these increments can be of great benefit to a number of
practical applications.

From a military perspective, for example, the Department of Defense (DoD) has become
increasingly interested in understanding and predicting the effects small-scale atmospheric tur-
bulence has on optical wave propagation in order to minimize the impacts on various DoD space
and airborne surveillance applications (see Figure 1.2). The influences of turbulence can have
direct effects on the propagation of light and sound waves in the atmosphere. For instance, a
phenomenon called scintillation, which is the fluctuation of the beam intensity, is due almost
exclusively to atmospheric temperature variations [152, 208]. Additionally, outside of the small
scale range, the larger scale influences are still not well-defined [10], thus work is still being
conducted to futher enhance our understanding of the turbulent nature of our very complex
atmosphere. Further, the larger scales often describe the sources and character of small scales,
because of the way they are linked. The energy of the large scales provides the driving force for
small scales, and the rates of turbulent dissipation determines the lifetime of large scales. There-
fore, with a proper characterization of velocity and temperature increments, improvements can

be made in this arena. As eloquently stated by Lawrence and Strohben (1970, [152]):

“A serious problem is associated with the use of the Gaussian model for optical
propagation; we believe its use should be discouraged. The Gaussian model con-
tains only a single scale size, although at least two independent scales are important



for optical effects. We shall see that the small-scale fluctuations are primarily re-
sponsible for intensity scintillation effects, and the large-scale fluctuations produce
optical phase effects. A Gaussian model having too few adjustable parameters ties
these together in an arbitrary and unrealistic way and engenders misleading and
erroneous predictions.”

(a) (b)

Figure 1.2: a) United States Air Force (USAF) laser-guided telescope in Albuquerque, New
Mexico [169], b) Blurred image of a satellite obtained from the telescope indictive of turbulence
impacts [169].

Furthermore, proper characterization of the velocity and temperature increments and iden-
tifying a suitable pdf model can aid in the testing and validation of mesoscale models. For in-
stance, conventional validation methods generally utilize traditional statistical methods, such as
root mean square error and correlation coefficient to compare observations against model results
[124]. However, these techniques do not provide a rigorous evaluation. From this standpoint,
the characterization of the observed atmospheric pdf increments can be used as a surrogate for

providing a benchmark for future model developement.

1.2 Objectives and Science Questions

The objective of this research is to investigate the behavior of multi-scale wind and temperature
increment fields. Also, an approach will be proposed for estimating their pdfs by utilizing the

maximum likelihood estimation techinque and a set of pdf models. In this work, a variety of



observational and modeling datasets are used to explore the boundary layer characteristics
of wind and temperature increments. With the use Goodness of Fit (GoF) techniques, an
examination into the model pdfs is conducted to identify a suitable model for practical use.

Therefore, the primary science questions raised by this research are:

1) Do velocity and temperature have a universal behavior across a range of spatio-temporal

scales? This science question will be addressed in Chapters 5, 6, 7, 8, 9, and 10.

2) If so, can we identify a universal probability density function (pdf) model which can
be used for both velocity and temperature increments? This science question will be

addressed in Chapters 5, 6, 7, 8, 9, and 10.

3) Utilizing the maximum likelihood estimation method, can we accurately estimate the
pdfs assuming an underlying distribution? This science question will be addressed in

Chapter 4.

4) Do various stability conditions influence the behavior of the pdf fields? If so, do the pdf
models still capture these traits? This science question will be addressed in Chapters 6,

8, 9, and 10.

5) How well do the state-of-the-art mesoscale models capture the observed pdfs of wind and

temperature increments? This science question will be addressed in Chapter 10.

1.3 Dissertation Outline

The overarching theme of this research is to use a myraid of long-term, research grade datasets
to identify the similarities and differences in the wind and temperature pdfs from different scales

of motion. Therefore, the chapters of this dissertation are organized as follows:



o Chapter 2 provides a brief background into the pdf concepts and brief literature review of

the current state and understanding of the increment pdfs.

e In Chapter 3, an introduction into the family of pdf models which have the capability to
represent the unique behavior of multiscale turbulent phenomena. Also, there is a discussion

on the maximum likelihood estimation technique which was employed throughout this work.

e Chapter 4 discusses some of the current inherent shortfalls that exist in terms of the limited
sample size that are pervalent in typical geophysical datasets. This study showcases the per-
formance of a model pdf, Normal Inverse Gaussian (NIG), and the ability to estimate it using
the maximum likelihood estimation technique. This type of analysis was never considered for
turbulence data. The material presented in this chapter is accepted and in press as the fol-
lowing publication: DeMarco, A.W. and Basu, S. (2017) Estimating Higher-Order Structure
Functions from Geophysical Turbulence Time-Series: Confronting the Curse of the Limited

Sample Size, Physical Review E.

e Chapter 5 examines high-Reynolds number flows from laboratory and atmospheric boundary
layer settings to explore the model pdfs fits to determine how well each model can represent

the small-scale turbulence data.

e In Chapter 6, using a state-of-the-art, stably stratified wind tunnel dataset, we will explore

the variability in pdf parameters as a function of stability.

e Chapter 7 focuses specifically on the tails of the mesoscale range wind distributions with
emphasis on the extreme ramp-up and ramp-down characteristics. This work is specifically
beneficial to the wind energy industry for predictive purposes. The material presented in this
chapter is in peer-review as the following publication: DeMarco, A.W. and Basu, S. (2017)

On the Tails of the Wind Ramp Distributions, Wind Energy.

e Utilizing the dataset from the previous chapter, Chapter 8 tests the different pdf models

against each other using GoF techniques (i.e., Kolmogorov-Smirnov and Anderson-Darling



tests) to determine which model is able to fit the data the best. We also show the impacts of
day versus night to reveal how the pdf parameters are affected by the different atmospheric

diurnal conditions.

Chapter 9 evaluates the mesoscale temperature increments similar to Chapter 8'’s wind speed

examination.

The state-of-the-art mesoscale model, Weather Research and Forecasting (WRF) will be
evaluated in Chapter 10 to see how well a handful of planetary boundary layer schemes are

able to capture the pdf behavior in both wind and temperature.
In Chapter 11, a conclusion of the work along with future directions is summarized.

Appendix A provides the computational code utilized in this work.



Chapter 2

Background

The study of turbulence is rooted in the understanding and characterization of the statistical
properties of the flow. From this point of view, the probability density functions (pdfs) of two-
point difference (or increments, see Eq. 1.1) of these stochastic variables can shed light into
unique features. The reasons for increased interest and an ability to accurate estimate the pdfs
of these flows is that it can uncover all the statistical moments (i.e., mean, variance, etc.) of the
turbulence field. Moreover, the tails of the distribution can provide great insight into predicting
extreme events [251]. Thus, evaluating and determining an estimation of turbulence can be
beneficial to a number of fields, as addressed in Chapter 1.

By definition, the pth order moment of a variable x about the origin (z = 0) can be computed

as an integral over the pdf of the velocity or temperature increment:

P = fm P f (x)dzx, (2.1)

-

where z is du or 8T for velocity and temperature increments, respectively, f(z) is the pdf
of x and the angular bracket denotes spatial averaging. The absolute value of x is simply
the structure function (SF) formulation and this relation describes the linear dependence of

structure. Traditionally, the study of turbulence deals extensively with the SF of a given variable



to determine unique scaling features, however, the pdfs of these increments possess important
information which can easily be lost using the SF approach, as it only computes the mean
quanity of the increments. Therefore, increment pdfs are a necessary tool to evaluate the distinct
properties of stochastic variables, such as intermittency.

Sreenivasan (1999, [237]) defines turbulence as intermittent and having a non-Gaussianity
appearance: “Roughly speaking, intermittency means that extreme events are far more prob-
able than can be expected from Gaussian statistics and that the probability density functions
(pdfs) of increasingly smaller scales are increasingly non-Gaussian . . .” Thus, the study of in-
termittency for fine-scale turbulent behavior is most conveniently conducted utilizing the pdfs.
Throughout the remainder of this chapter, a review of various turbulence pdf features, such as
those due to intermittency, will be discussed starting with velocity increments.

Before delving into the different features of the pdfs of velocity and temperature increments,
it is important to understand how to interpret a pdf plot. From a visual perspective these
distributions are depicted by either a pdf or cumulative distribution function (cdf) in linear-
linear, log-linear, and log-log coordinates. This work is primarily focus on last two vantage
points. However, we caution that portraying pdf results via log-linear can mask some of the
important features near the peak of the distribution, which will be highlighted in Chapter 8.
Similarly, depicting results in a linear-linear fashion can hide the behavior of the tails. The
visual comparison between these three plots provides a fast and intuitive view of the nature
of the data. First, a power law distribution will appear as a convex curve in the linear-linear
and log-linear plots and as a straight line in the log-log plot. “Next, a Gaussian distribution
will appear as a bell-shaped curve in the linear-linear plot, appear as an inverted parabola in
the log-linear plot and as strongly concave sharply falling curve in the log-log plot. Last, an
exponential distribution will appear as a convex curve in the linear-linear plot, as a straight

line in the log-linear plot and as a concave curve in the log-log plot [233].”
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2.1 Velocity Increment PDF's
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Figure 2.1: a) An early example of the pdf of small-scale velocity gradient (du/dt) from exper-
imental data over the ocean indicating a clear deviation from Gaussian. (adapted from [257],
Figure 8). b) The transition of normalize velocity increments (Au/oa,) from small (r/n = 10)
to large (r/n = 245) scales. Here, the separation distance r is being normalized by 7, the Kol-
mogorov length scale, n = (1/€)!/4, where v is the viscosity of the fluid (adapted from [109],
Figure 5.1).

In 1956, Albert Einstein remarked that the most meaningful quantity to study in stochastic
processes is the increment [84]. Over the last several decades, the characterization of turbulent
flows utilizing the pdfs of the two-point velocity increments has gained momentum [24, 31, 43,
56, 100, 128, 156, 212, 248, 257, the list goes on]. The evolution of pdfs provides an interesting
perspective in the description of velocity increments over a range of spatial and/or temporal
scales. Many geophysical turbulence studies have shown that the pdfs of velocity increments are
scale-dependent and change steadily within the inertial range, for example, see Figure 2.1. When
viewed on a log-linear plot it can become clear that these distributions exhibit strong departure
from Gaussianity (i.e. heavy tail and convex peaks near the core) at small increments, then
become more Gaussian as separation increases towards the energy input scale [95|. Batchelor
and Townsend (1949, [30]) found evidence that deviation from Gaussianity is stronger as the

RE number is increased and with decreasing separation, which was later confirmed by Kuo and
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Corrsin (1971, [143]) and others [253]. This behavior is considered to give further affirmation
of the intermittency in the flow, which can also be depicted in the deviation from the structure
function scaling exponent ({,), discussed further in Section 2.4.

One specific feature of pdfs that varies with scale is the peakedness of the distribution
(i.e., increased peakedness relative to a Gaussian distribution with decreasing separation). In
fact, an intriguing finding was revealed by Huang et al, (2011) indicating that the maximum
value of the velocity increment (i.e., mode or peak of the distribution) scales consistent with
inverse of the first order structure function with respect to separation distance [118]. From a
physical perspective the variations in the peak are often thought to be “...caused by the random
and gentile fluid motion in the center of the ramps leading up to the sharp velocity gradient
(43, 140].”

Another characteristic of pdfs is the skewness factor, believed to be related to the vortex
folding and stretching process as the energy is transferred between the large and small turbulent
eddies [63]. For instance, pdf have been shown to display increased negative skewness as thermal
stability increases [95].

Furthermore, early experimental evidence revealed that the tails of the pdfs, contributing to
higher-order moment estimation, have an exponential behavior, semi-heavy tail features (i.e.,
leptokurtic) for both the velocity increment and derivative fields [12, 94, 99, 128, 248, 251, 257].
By many [12, 110], this exponential tail was subsequently represented with a stretched ex-
ponential in order to capture the extended tail behavior and aid in the determination of the
higher-order moment of velocity increments. Physically speaking, the exponential tails of the
pdf are thought to be caused by occasional sharp velocity gradients (rounded-off shocks,[140],
slender vortex filaments [195]). Thus it is believed that the degree of heavy tailedness is pro-
portional to the RE number, that is higher RE leads to heavier tails [25].

Significant efforts have been made to determine if a particular pdf model is capable of
capturing these ever-changing pdf features. One of the most well-accepted ideas is the suggestion

that the turbulence behavior follows a stretched exponential pdf, (e_cmﬁ), where x represents
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the increment and 3 is the “stretching” parameter from 0 to 1 and represents the tail behavior
[37, 128, 248]. This particular model has shown reasonable qualitative fit to turbulence data
near the dissipation range (smallest-scales) where the tails are heavier, [24]. However, there are
a few concerns with this model: (i) this is only a one-parameter (3) pdf and cannot estimate
all the features of empirical data; (ii) this model assumes symmetry in the pdf, which has been
shown not to be the case for turbulence data; (iii) it focus on the tails of the distribution and
cannot capture the full features [95].

In the early nineties, Castaing et al. (1990, [56]), utilizing the Kolmogorov’s 1962 (K62,
(139, 199]) log-normal model, a fitted distribution that is “weakly curved” near the dissipative
range, which deviates from the earlier exponential finding. A year later, a similar result was also
confirmed using direct numerical simulation (DNS) [264]. However, as remarked in [56] there
are some issues with this model in terms of properly capturing the center and skewness of the
distribution. Similarly, in practice the log-normal model is considered to provide a modest fit
for experimental data [244, 268]. Interestingly, studies within other geophysical disciplines (e.g.,
solar wind fluctuations [204, 234]) have experimented with the log-normal model, confirming
that it provides representative fits to other geophysical turbulent flows. Unfortunately, these
attempts to accurately characterize the pdfs of velocity increments were focused on fitting
the tails, thus a prediction of the core or “shape parameter” of the distribution was lacking.
Obtaining precise characterization is important for discerning between different theories.

Additional pdf models were later proposed in the early 2000s, that were believed to accu-
rately capture the full behavior of the velocity increment distribution. Beck and Cohen (2003,
[32]) introduced the concept of a superstatistic (aka “statistics of a statistics”) incorporating
the log-normal concepts of Castaing et al. (1990, [56]) and having the ability to capture unique
pdf features. Also, Barndorff-Nielsen (2004, [24]) illustrated, in a parsimonious manner, that
a member of the generalized hyperbolic distribution family, normal inverse Gaussian, could
perform equally as well for turbulent quantities. The NIG model has been proposed and tested

against the empirical data also revealing a remarkable fit to the data, most recently [43, 44, 166].
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Figure 2.2: Similiar examples as Figure 2.1, but for small scale temperature a) adapted from
Ching (1991,[64]). b) adapted from Warhaft (2000, [269]).

These two models will be discussed in more detail in the next chapter. Now, despite these de-
velopments, we are still lacking a general consensus into whether or not a given pdf model can
provide acceptable estimation of the turbulence behavior, especially in a quantitative manner.

Therefore, this research is geared to explaining and expanding on these ideas.

2.2 Temperature Increment PDF's

In the study of fluid flows, the temperature field behaves in the passive sense in which the
velocity acts as a vehicle advecting this scalar fields around where it has no significant effects
on the turbulent dynamics. However, in larger scale motions and in stratified environments, such
as the atmopshere, temperature fluctuations can directly effect the velocity field (via buoyancy
forces). Thus, it is important to investigate difference between both quantities. The study of
the fluctuations of the local temperature contain considerable information about both dynamics
and transport processes [104]. Some other examples of scalar fields include pollutants, humidity,
and pressure, which will not be studied here, but have implications in dispersion modeling and

optical turbulence research.

The pdf of temperature increments, or similarly, passive scalars have received considerable
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attention but not nearly as much as the velocity counterpart [14, 64, 141, 178, 214, 226, 226,
236, 251, 269]. Within these studies, it is well discussed that the temperature increments pdfs
in small-scale settings behave somewhat differently than velocity, such that the deviation from
Gaussian is much more pronounced in temperature, for example see Figure 2.2. The temperature
increments “...is affected both by the intermittency of the energy transfer and the intermittency
of the temperature variance; this can explain the large deviation from the Gaussian curve,
Castaing et al. (1990 [56]).”

Furthermore, it has been shown that the temperature pdfs, within laboratory flows, show a
much more heavier tail compared to the velocity counterpart, which indicates a more anomolous
behavior in the temperature fluctuation field [56]. Even though, there are differences between
the two variables, pdf of temperature increments have also shown to fit with stretched expo-
nentials well [64]. However, a similar concern arises with regards to the issues of the stretched
exponential fit addressed in Section 2.1. Warhart (2000, [269]) remarked that the exponential
tails evident in the scalar fields was due to anomalous mixing as the fluid moves beyond the
integral length scale. This behavior was also shown in [126] to describe the small-scale temper-
ature pdfs that have a Gaussian appearance near the core and exponential tails beyond 1. In
terms of the skewness features of the temperature pdfs, Ould-Rouis et al. (1995, [203]) found
that “...the experimental skewness factor for the distribution of Af (temperature difference)
grows when separation is decreased, in total contradiction with the local isotropy assumption
which stipulates that it should be zero.” Though, the velocity increments tend towards isotropy
with decrease separation, the temperature field does not exhibit this feature and is a major
difference between the two.

Another example of the temperature pdfs come from LES results, computed by Métais and
Lesieur (1992, [177]) and experimental evidence shown by Sreenivasan et al. (1979, [240]). These
studies revealed that the tails of the temperature fluctuations are exponential, whereas the lon-
gitudinal velocity fluctuations were Gaussian. This behavior demonstrates that the temperature

variations are strained by its velocity counterpart. Eventhough there are good examples in nu-
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merical and laboratory experiments, the features of temperature increments within the ABL
still remains largely undocumented.

In terms of the scaling characteristic the temperature field within the inertial range is often
assumed to scale similar to velocity (i.e., (2 = 2/3, based on Kolmogorov-Obukhov-Corrsin
(KOC), [71, 138, 198]). However, similar to K41, this theory is also not consistent with the
experimental findings of the temperature pdfs and leads to anomolous scaling characteristics.

Figure 2.2 showcases two examples of pdfs of temperature increments within the inertial
range. We will probe further into the characteristics of temperature in the atmosphere as well

as under various stability conditions.

2.3 Mesoscale Increment PDF's

Figure 2.3: This example shows the evolution of the velocity increment pdf for larger scale
motions from 2.5, 25, 250, and 4,000 sec, from top-bottom respectively. The solid lines represent
the log-normal model (adapted from [49]).
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In contrast to the evaluation of the pdfs within microscale turbulent fields, wind speed scal-
ing properties within the mesoscale range (approximately sub-hourly to sub-daily time scales)
still lacks an extensive examination. Due to a number of external forces and influences, such as
diurnal variations, atmospheric stability, and topographical interaction (i.e., inhomogeneities),
it is not expected that a universal scaling description can be made within this regime [151].
Moreover, in the mesoscale range, the scaling properties have shown to vary with topography
and the atmospheric conditions.

Thus, only a handful of papers exist [21, 49, 53, 105, 133, 135, 136, 137, 150, 151, 155, 185,
219, 249] attempting to uncover a range of scaling characteristics. They analyzed data from
around the world, however, several of these papers focused on wind gusts (7 being on the order
of seconds), and thus, their findings are not directly the associated with the mesoscale wind.
For instance, Bottcher et al. (2007, [49]) found that the pdfs of velocity increments within the
ABL have a similar to isotropic turbulence in the small-scale range, but are quiet different
in the larger scales (up to ~1 hr), see Figure 2.3. While, Liu et al. (2010, [156]) finds that
between sub-second to sub-hour that the tails of distribution fit remarkably well to truncated
stable distributions. They conclude that the pdfs of the velocity increments of the atmospheric
turbulence are not similar to what is observed in the laboratory turbulence. Later, Liu et al.
(2013, [155]) showed both log-normal and truncated Lévy flights, but neither fit the data well.

For mesoscale regimes, Muzy et al. (2010, [185]) and Baile and Muzy (2010, [21]) provided an
evaluation of statistical description of the mesoscale wind increments. They concluded that the
large-scale (hrs-days) motions do in fact resemble those intermittency-cascade properties found
in small-scale laboratory turbulence. Similar results were discovered by Liu and Hu (2013,
[155]). In fact, some empirical evidence suggest that the wind speed is more intermittent in
the mesoscale range than the inertial range [53, 151]. Additionally, Telesca and Lovallo (2011,
[249]) found a strong height dependence on the scaling characteristic, but they did not provide
a physical explanation. It was speculated in Kiliyanpilakkil and Basu (2015, [136]) that the

buoyancy effects are at the root of this height-dependency trait as buoyancy force dominates
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at higher heights above the surface [246].

A significant issue with most of these studies was the use of very limited amount of observa-
tional data (often with durations of a few hours to merely a few days). Despite, quasi-universal
features being revealed, many of these studies concluded that further experimental evidence is
required to confirm these finding. The scaling properties of the temperature field within the
mesoscale range has not received any attention in terms of the pdfs. This work will address
the characteristics of the temperature pdfs and will attempt to uncover features that may shed
light other unique features.

In conclusion, the past research in this arena has proved to be very insightful for characteriz-
ing turbulence phenomena. However, researchers are still struggling with providing a theoretical
framework for explaining the dynamics behind known features of turbulence (i.e., intermittency
and energy cascade). As mentioned by many, more work is required to gain further knowledge
regarding a practical approach for estimating and representing the pdf models. In the next
chapter, we will discuss the pdf models which exhibit strong characteristics of non-Gaussianity

as well as our estimation techinques which we will employ throughout this research.

2.4 A Brief Review of Other Statistical Descriptions of Turbu-

lence

One of the earilest, and still highly regarded, theories was first introduced by Lewis F. Richard-
son in 1922 [216]. In his work, he proposed the concept of the kinetic energy cascade in which
energy from high Reynolds (RE) number flows is injected into the flow by large-scale instabil-
ities and transferred through the intermediate scales (aka the inertial range), until the energy
is dissipated, by viscosity, at small scales and converted to molecular heat, see Figure 2.4a.
Taking this idea a step further, in the 1941, Andrey Kolmogorov (K41) [138] along with his
student Alexander Obukhov [198] derived a very powerful formulation based on dimensional

analysis, from the Navier-Stokes equation to describe this process. They postulated that under
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Figure 2.4: a) Depiction of small-scale turbulent energy cascade (adapted from Andrews and
Philips (2005, [10])). Based on K41 theory, the inertial range in fully-developed turbulence is
bounded by a region of eddies sizes between the outer (Lg) and inner length scale (Ip). b)
Example of “2/3” scaling law within a turbulent random field (adapted from Wittwer (2013,

[272])).

homogeneity, isotropic, and a constant dissipation rate, energy cascades from large to small
scales through the inertial sub-range (IR) with a scale-invariant relationship of ((» = 2/3)
until the energy is dissipated and transferred to molecular heat. The energy cascade process
is dependent on only the characteristic size of the energy input, (integral length scale L) and
the mean energy dissipation rate, {¢). Under the assumption of homogeneity and isotropy,
turbulence can be universally described by employing the K41 theory, which has become the

foundation of turbulence research, as described by Eq. 2.2,

Sp = {[ulz + 1) — u(r)]") = (|dul) ~ (), (2.2)

where S, is the pth order structure function with respect to the spatial separation, r (equiva-
lently the temporal separation, 7) and mean energy dissipation rate, (€). The angular brackets

here indicate spatial averaging, [du|P is the p 1 order absolute moment of the velocity incre-
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ments, and ¢, is the scaling exponent. The scaling exponent is believed to have universal traits
such that ¢, = p/3.

This statistical approach has paved the way for turbulence research over the last 70 years
leading to a countless number of theoretical, experimental, and numerical modeling studies.
However, shortly after K41’s landmark theory, objections to the existence of a universal scaling
behavior were made by Landau and Lifshitz (1944, [147]). They suggested that the large scale
fluctuations played a role in the the energy dissipation rate and the scaling exponent was not
universal. Thus, as a result, Kolmogorov and Obukhov in 1962 (KO62) proposed a refined
similiarity hypothesis (RSH) remarking that (e), is not an average quantity throughout the
energy cascade process, but rather has a varying, “local” dissipation rate, €,, over a eddy size,
r. This modification assumes a log-normal probability density function for €, and that that the
logarithm of the energy distribution in the inertial range, was Gaussian [139, 199]. This leads
to the scaling exponents within the inertial range behaving in a non-linear fashion.

Following this change, experimental evidence confirmed this deviation in the scaling expo-
nent {, # p/3, giving further credence to the existence of an intermittency characteristic in
small-scale turbulence. Figure 2.5a along with Eq. 2.3 illustrates this non-linear feature in the
scaling exponents as a function of p from various experiments along with a few cascade models
(overlaid, e.g., log-normal [139, 139], 3 [97, 196], log-Poisson [225]) which have been developed
to predict the scaling behavior.

Figure 2.5 also illustrates the scaling exponent for scalar fields revealing smaller exponents
as the order of the moments increase. These models seems to give a good description of the
turbulence behavior from experimental evidence. However, issues arise in the empirical identifi-
cation of high-order structure functions resulting in a statistical inaccuracy which causes major
problems using this SF approach. The existance and properties of small-scale intermittency
still remains an open question. In Chapter 4, the higher-order moment estimation issue will be
addressed in more details. For a comprehensive summary of turbulence cascade models, please

refer to Frisch (1995, [95]) and Sreenivasn and Antonia (1997, [239]). The scaling exponent is
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described as,

Ep= =

w3

(3p - p%), (2.3)

ol =

where p is referred to as the intermittency correction and believed to be ~ 0.25, [18], which

corresponds to (o ~ 0.70.
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Figure 2.5: a) Exponent ¢, vs. p. Inverted white triangles: data from Van Atta and Park (1972)
[258]; black circles, white squares and black triangles: data from Anselment et al. (1984) with
increasing Re: + signs: wind tunnel data using ESS; straight dash-dot line from ¢, = p/3 (K41).
The model fit lines are from the various cascade models. (adapted from [95]), b) The scaling
exponents (&,) for the scalar increments (A6, ) with the separation distance in the inertial range.
Squares are experimental results from Antonia et al. (1984, [14]), with vertical bars showing
the uncertainty in the data. Circles and diamonds are from Meneveau et al. (1990, [174]. The
dashed lines are estimates of the uncertainty (adapted from [239]).

To expand these efforts, alternative, and perhaps more informative, statistical techniques
can be used. For instance, examination into the normalized third and fourth order moments has
become a method for capturing intermittent phenomena [239]. For instance, Egs. 2.4 and 2.5

are referred to as the skewness (S;) and flatness (F} ), respectively. The S, factor is considered
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highly sensitive to the deviation from a normal distribution, which according to K41 theory
this value should saturate at zero (S=0, [175, 253]). Whereas, the F; is also a good metric for
determining the degree of intermittency and is quite simply equal to three for pure Gaussian
distributions. As the flatness values increase the distributions exhibit a greater departure from
Gaussian. These quantities can prove valuable as statistical metrics regarding the behavior of
the flow as a function of separation distance, (r). The skewness, Sy, and the flatness, F, are

defined as,

) 3

Sy = %‘él}_gﬁ, (2.4)
Sul

o éﬁ (2.5)

Outside of the pdfs, spectra, and structure function approaches, one can use other types
of scaling features to uncover various characteristics of turbulence phenomena. For instance, in
the mid-1990s, Roberto Benzi and his colleagues introduced a novel concept called extended
self-similarity (ESS) in which they identified a consistent scaling behavior of velocity/tempera-
ture increments that extend well beyond the inertial sub-range, into the dissipation range (see
Figure 2.6 as an example, [38]). They approached the problem by plotting 37 order structure
functions against other ordered structure functions, which represented a relative scaling re-
lationship against 3"-order, Eq. 2.6. This approach has since been examined experimentally
through numerous laboratory, and some atmospheric, studies for a variety of Reynolds number
flows [8, 35, 36, 38, 40, 78, 245, 276, just to name a few|]. As for the temperature field, numerous
other studies [5, 14, 16, 41, 61, 68, 154] have been conducted examining the scaling behavior of
this field, through both SF and ESS analysis resulting in some variation between the velocity
and temperature fields within the inertial sub-range, which is believed to be a result of stronger

intermittency within the temperature field [178, 226, 269].

Spig = E—z (2.6)
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Figure 2.6: a) Third order SF of velocity increments versus spatial separation (not labeled in
x-axis) for various Reynolds number flows, the solid line represents a slope of 2/3 in the inertial

sub-range. b) The corresponding ESS (211(1 vs. 31d order) indicating larger range of 2/3 scaling
(adapted from [38]).

More recently, it was shown by Kiliyanpilakkil, et.al., [135, 136] that the wind speed charac-
teristics from various locations within the atmospheric boundary layer indicates an ESS-based
scaling relationship within the mesoscale range (scales larger than inertial sub-range, between
sub-hourly to sub-daily). Remarkably, these scaling results were shown to be consistent with

the ESS literature within the inertial range of the velocity field.
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Chapter 3

Statistical Probability Density
Functions and Parameter Estimation

Techniques

Unlike examining turbulence series via scaling exponent of S, over a range of scales, utilizing
the pdfs of velocity increments can shed additional light into some of the unique statistical
characteristics of the flow. Unfortunately, at this time, there is no universal underlying pdf
capable of describing the statistical properties of turbulence. In order to determine possible
pdf candidates for the sample data, one needs to use estimation techniques for comparison.
In this work, we will show that the maximum likelihood estimation (MLE) approach is ideal
in the sense that it seeks to find values of the pdf parameters from model distributions that
maximize the likelihood that the observation data came from a given distribution [270]. Thus,
using this estimation method we will evaluate a handful of known distributions to determine if
the a number of observed data is accurately captured by a practicular model pdf.

The pdfs models used in this research are discussed below along with the techniques utilized
to estimate the parameters of the pdfs. Some of these models extend beyond the field of fluid

dynamics and have never been considered in this field as potential fits to the velocity and/or
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temperature increments from a wide range of scales. The benefit of identifying a pdf to represent
turbulence is that the distribution will be able to characterize the flow with few parameters, even
across distinct experiments. Quite interestingly, there are other research arenas, (e.g., financial,
stock market variations [23, 42, 102, 205, 262, 278]) where observed stochastic quantities, like
turbulence, deviate from a Gaussian distribution. In fact, some studies have attempted to
draw analogies between the scaling properties of the two fields, see Figure 3.1. As a result of
these works, studies in other disciplines, beyond hydrodynamic turbulence, have designated a
mixture of various Gaussian distribution types, which capture the scale-dependent behavior of

the increments.

Py, (4av)

PAf (Ax)

Figure 3.1: a) The stock market price changes (Az) for different 7=640 sec, 5,120 sec, 40,960
sec, and 163,804 sec (from top to bottom) . b) turbulence flow (Av) for different separations
(6r = 3.3n, 18.5n, 138y, and 3257) from small to large scale, situated from top to bottom,
respectively, (adapted from [102]).

A popular family of pdfs that is widely considered in the field of statistics and finance is the
generalized hyperbolic distributions, [205]. In this work, we focus on a couple of these models
as potential fits to the empirical turbulence data. The beauty of these distributions are that

they are capable of representing not only the range of intermittent features of the pdfs (e.g.,
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heavy tails), but they also can be estimated easily using a well-known estimating tool, known as
the MLE. Throughout this work, we will be comparing these models against the observational
data and between one another to determine the accuracy of the fits. As its been shown in
mostly the finance community, see Figure 3.2, these models possess the traits which also exist
in turbulence. In the following sections, the pdf models will be discusses along with some of

their key features.
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Figure 3.2: An illustration of a daily IBM-stock returns fitted with generalized hyperbolic,
hyperbolic and Gaussian distributions (adapted from [42]).

3.1 Normal Inverse Gaussian (NIG)

The one-dimensional normal inverse Gaussian (NIG) pdf contains four-parameters (e, 3, 6, and

1) and is defined as follows [22, 205, 221]:
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x exp (Bz) , K3 (5a\/¢(m)) . (3.1)

where

¢(m)=1+[x;“r (3.2)

The parameter o controls the steepness of the pdf, where a small « signifies a heavy tail. 3
is the skewness parameter, such that a negative 3 indicates that the pdf is skewed to the left.
j is the centrality or translation parameter and is slightly different from the arithmetic mean
of the distribution. § is a scale or peakedness parameter and it controls the shape of the pdf
near its mode. o and § are always positive and 0 < || < a. This distribution is a sub-class of
the generalized hyperbolic family. For NIG, A, which is also a scale parameter, is equal to -3,
which leads to a K modified Bessel function of third kind of order one [3]. For an illustrative
example of the behavior of this distribution, Figure 3.3 shows idealized cases for which two of
the parameters vary. This representation highlights the inherent ability of this distribution to
capture the unique traits of the increment pdfs.

The parameters of the NIG distribution are explicitly related to the first four central mo-
ments [24, 130]. The benefit of this pdf model is that all moments are finite and do not suffer from
undefined or infinite moment estimation. Let us denote the sample mean, standard deviation,
skewness, and kurtosis by m;, mg, ms, and my, respectively. Further define: v = m
Subsequently, the pdf parameters can be estimated, via the method of moments (MME) ap-
proach, as follows [130]:

a =B+~ (3.3a)

(mamsv?) |

: (3.3b)

8=
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Figure 3.3: NIG pdfs for different values of a (left panel) and 6 (right panel). For all the pdfs,
p and 3 are assumed to be equal to zero. For the left figure, 6 is kept constant at 2. In the right

figure, « is taken as 4.
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The tails of the distribution exhibit the following traits:

as r — o0. (3.4a)

fo(z) ~ Clz| ™/ exp(—alz| + Bz),

Thus, the heaviest tail decays as:

B<0 and z — —oc,
when (3.4b)

f2(x) ~ Cla|™** exp(—alz| + |B|)
>0 and x — 400,
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and the light tail decaying as:

8

_3/2 - - %B<0 and = — +oo,
fu(@) ~ Clal2exp(-ala| — |8al),  when (3.4¢)

:3>0 and z — —oo.

Following the approach by Rydberg [217], numerically generated NIG distributed variates

can be constructed using this approach:

e Sample a Inverse Gaussian distribution, Z = I1G(4,7).
e Sample a Gaussian distribution, ¥ = Normal(0,1).

e Return the NIG random variates, X = pu+ 32 + VZY.

B
where v =  a? — 32

3.2 Generalized Hyperbolic Skew Student’s t (GHSST)

Another subclass of the generalized hyperbolic family of distributions is GHSST. It has been
shown to fit the distributions of financial data very accurately and contains the following pa-
rameters (v, 3, p, and ) [2, 42, 89, 153, 205].

The skewness and the heavy tailedness of the GHSST are determined jointly by the com-
bination of the parameter values of 8 and . With v fixed, a lower value of J implies a more
negative skewness or left-skewness as well as heavier tails. On the other hand, with 3 fixed, as v
becomes larger the density becomes less skewed and has lighter tails. Figure 3.4 shows idealized
cases for which two of the parameters vary.

The GHSST distribution is a subclass of the generalized hyperbolic (GH) family, which
exhibits both heavy tailed and skewed properties of a distribution. These features are uniquely
characterized by the following four parameters (v, 3, p, and 4) [1, 2, 205 given by this proba-

bility distribution function (pdf):
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Figure 3.4: GHSST pdfs for different values of v (left panel) and ¢ (right panel). For all the
pdfs, i assumed to be equal to zero and 3 ~ 0. For the left figure, ¢ is kept constant at 2. In
the right figure, v is taken as 4.

2];2‘/5”’ Y *"l:%i
4 Bl et | B K. 6(:1:—#-), 3.5
FrenBnd) = et () Kep (3luo)e 35)
where y, = /02 + (z — )2 and I is the gamma function. The parameter v controls the tails

of the distribution and represents the number of degrees of freedom. The heaviness of the tails
are inversely proportional to the value of v. Like NIG, S is considered the skewness parameter,
such that a negative 3 indicates that the pdf is skewed to the left, while x4 and d are similar
paramters as in NIG. K,(z) is the modified Bessel function defined as [3]:

The pdf parameters have the following form and the moments can easily be estimated for

the sample statistics [2]:

2
mi = p+ fi 5 (3.6a)
2525 2 \*
mz = ((1}—2)2(1/—4) +U—2) 5 (36b)
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(3.6d)

The skewness and kurtosis, higher-order moments, do not exist when » < 6, and v < 8, re-

spectively. As it turns out, this limitation is a hindrance for use of GHSST for turbulence data.

Their tails decay slower than the observations and other models. It can be proved that a much

slower decay of tail distributions will lead to the divergence of variance. More details regarding

this will be discussed later in Chapter 7.

The tails of the distribution exhibit the following traits:

fo(z) ~ Clz| /% L exp(—|Bx| + Bx) as ¥ — oo.

Thus, the heaviest tail decays as:

8 <0 and z — —o0,
Fol(@)~ Clz|~2 1 when

B3>0 and x — +o0,

and the light tail decays as:

B <0 and = — +oc,

Fo(@) ~ Cla| ™% exp(—2|B8z|) when

A>0 and x — —o0.

(3.7a)

(3.7b)

(3.7¢)

Such that, when 3 > 0 the left hand tail decreases as |z|~ ¥ /2+1) exp (28x), while the right

hand tail decreases as |z|~“/2*1). When 3 < 0, the behaviour of the two tails is the opposite

142].
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Following Aas and Hobzek Haff 2005 [1], numerically generated GHSST distributed variates

were constructed using this approach:

e Sample a Gamma distribution, G = Gamma(r/2,§?/2).
o Obtain the Inverse Gamma by Z = G™'.
e Sample a Gaussian distribution, ¥ = Normal(0,1).

e Return the GHSST random variates, X = p + 8Z + VZY.

3.3 Variance Gamma (VG)

The one-dimensional VG distribution has four parameters («, 3, u1, and A, [161, 205, 211, 223],
Eq. 3.3). Similar to the NIG, this distribution is also a sub-class of the generalized hyperbolic
distribution familiy. Thus, the «a, 3, and p parameters represent the same features as NIG.
However, unlike NIG, where A = -1/2, within the VG distribution A varies and ¢ = 0. This
distribution type has never been thought to represent turbulence data and is mostly used for
financial data analysis (e.g., share market returns) [161]. As A increases towards oo, the skewness
and kurtosis of a random variable tend towards the skewness and kurtosis of a normal random

variable is calculated from:

i (e —pl) P70 (3.8)

2

2_g2\A
Molhamb) = i) (lx_”)A_%K
VG $; ,a, s L ==
; 27T(\) \ @
where A = 3/(my4-3) and T is the gamma function. Figure 3.5 shows idealized cases for which
two of the parameters vary.
Subsequently, the pdf parameters can be estimated, via the method of moments approach,
as follows [205]:
2

Y= —; (3.9a)
ms

a= v+ 5% (3.9b)
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Figure 3.5: VG pdfs for different values of a (left panel) and A (right panel). For all the pdfs,
u and 3 assumed to be ~ 0. For the left figure, A is kept constant at 1. In the right figure, a is

taken as 1.

msA

B= - (3.9¢)
3\/mzE

4= my — 7”2?3)\. (3.9d)

3.4 Log-Normal Superstatistics (LNSS)

The concept of superstatistics (aka “statistics of a statistics”) was proposed by Beck and Cohen

2003 [32]. Here, the log-normal superstatistics (LNSS) pdf can be written as:

L[ i " — (In (b/p))* o—(1/2)ba?
]0 b ep{“} db. (3.10)

funss (zip,8) = 5— 542

Figure 3.6 will show idealized cases for which two of the parameters vary.

The non-central second-order moment and the flatness of this distribution can be written

as follows: [31]:
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Figure 3.6: LNSS pdfs for different values of u (left panel) and s (right panel). For the left
figure, s is kept constant at 1. In the right figure, p is taken as 1.

(=2) = v u, (3.11a)
B= T g, (3.11b)
(xZ)? ’ '

where w = 5. These equations are easily solved to estimate the unknown parameters p and
s. Customarily, LNSS pdfs are estimated using MME techniques, thus for this work will be
primarily folllowing this method. Also, as a cautionary note, the integral of LNSS cannot be
evaluated in closed form and due to extremely high computational costs associated with numer-
ical integration of the pdf, the MLE technique is problematic and will require further evaluation
to determine a suitable alternative method. In the meantime, the MME-based estimation tech-
nique was utilized. Also, the use of MME will later reveal further evidence that MLE is a much
more powerful and robust estimating tool.

In the present work, these method of moments-based estimates (MME) shown for all four

models are used as initial conditions for the Maximum likelihood estimation (MLE) computa-
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tions. A commercial MLE function from MATLAB™, employing the Nelder-Mead method, is
utilized, however, an expectation-maximization algorithm is presented below as an alternative

appraoch for computing MLE.

3.5 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is a well-established statistical method to estimate the
parameters of a given model (say NIG) which make the sample data, x; = x;;x2:u:xy, the
most probable outcome. Let £(x| ) denote the underlying NIG pdf of the sample data with
parameters (1= , 2= , 3= ,and 4 = ). In the case of independent, identically

distributed NIG variates, £(x| ) can then be expressed as a joint probability function:
£(x] ) = fi(x| )E2(xa| )ufn(xn] ): (3.12)

However, in order to determine the model parameters based on observed data, we have to solve
an inverse problem. The first step is to define a likelihood function, where the parameters are

a function of the fixed data, as follows:
L( |x) = £(x] ): (3.13)

In the case of the NIG pdf, this likelihood function is simply a four dimensional surface sitting
above a four-dimensional hyperplane covering the NIG parameters. For computational ease, it
is customary to maximize the log-likelihood (instead of L) to obtain the MLE estimates. The

log-likelihood funection for the NIG pdf can be written as:

In(L( |x))=-NIn( )+NIn( )+N( — )=

1 N N N
52mumn-2m+2m@ﬂ mﬂ; (3.14)
i=1 i=1 i=1
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where N is the sample size. Next, to find the parametric values which “maximizes” the log-

likelihood function, we impose:

Oln (L (8]x))

=}, A
a6, 0, (3.15)
9?In (L (8|x)) ,
——892 <0, (3.16)

where k varies from 1 to 4.
Karlis [130] developed an expectation-maximization algorithm 3.1 to easily maximize Eq. (3.14).
He leveraged on the fact that the partial derivative of In(L) with respect to 3 leads to a simple

relationship connecting the sample mean (F) and some of the NIG parameters:
)
f:}L+—€. (3.17)

He also derived the relationships between the conditional expectations of the inverse Gaussian
(IG) distribution and NIG parameters (see [130] for details). A pseudo-code for his approach is

provided below:

3.6 Extreme Value Theory - Hill Estimator

Another aspect of this research involves the behavior of the pdfs tails, which is dictated by
extreme and rare events which also has a strong influence on the higher-order moment statis-
tics (used to determine intermittency in small scale turbulence). Extreme-value (EV) theory
concepts primarily developed for use in finance and statistics will be explored. Over the years,
several estimators for v* (the tail-index) have been proposed in the literature, including (but not
limited to): Pickand’s estimator [209], Hill estimator [111], and the Dekkers-Einmahl-de Haan

estimator [77]. For this work, the Hill estimator is used and is determined from the following
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ALGORITHM 3.1: Expectation-Maximization for NIG pdf

Initialize:
NIG parameters (a(!, gV, 4

Compute:
L using Eq. (3.14) and initialized parameters

for k =1 to kyue do

Compute:
E-Step - The conditional expectations, s; and w;

50/ (zg) Ko(6®at®) /3 (z
TETTA® K (0Wa®) /6 (z)

o alk) K_g(ﬁ(k (%) /oF)(z;))
C ) /e () Koy (60 a®) /o) (z;))

(1), 61 using the MME approach

i=1,..,N
Compute:
M-Step - Update the parameters using s; and w; from previous step

SFZN’

gLl o \/1:\

5(k+1)
M
N N
S xiw; — Ty wj
(k+1) ,  i=1 i=1
B = P ;

N -3 Z wj
i=1

1)

plk+D) g glkthg

k1) \/(,},(k+1))2 o (5(k+1))2_

Compute:
L*+1) using Eq. (3.14) with updated parameters

(k+1) _ 1 (k) -
if ‘% < 10 10 then

break
end if

end for
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equations,

k =1
Y= = E lo ; 3.18
i (k - g ((I)k-H ) ( )

where £ = 1,..., N — 1. It is customary to estimate «* value through a graphical representa-
tion called a Hill plot. This type of depiction is formed by plotting v* versus k [82]. For EV
distributions (e.g., Pareto), estimated * are expected to stabilize (i.e., exhibit non-fluctuating
behavior) with increasing values of k. Illustrated in Figure 3.7, for a dataset depicting inter-
net traffic, it can be seen that the tail behavior exhibits a “quasi” power-law behavior as the
estimated +* value plateaus. The magnitude of the tail-index value provide insight into the
heaviness of the tails, in which small values signify heavy tails while larger v* values indicate
a decrease in the slope of the pdf tails as shown on a log-linear plot. Additional usage will also
provide a quantitative method for estimating the maximum order statistic achievable given a

particular PDF of a given increment, as discussed more in Chapter 4 and Chapter 7.
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Figure 3.7: Example of a Hill plot for the transmittion times of web files. The asymptotic value
occurs at a ~ 1, signifying a Pareto-type distribution (adapted from [72]).
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Chapter 4

Estimating Higher-Order Structure
Functions from Geophysical
Turbulence Time-Series:
Confronting the Curse of the

Limited Sample Size

4.1 Introduction

ICharacterization of small-scale turbulence by higher-order statistical moments has a long and
rich history in both laboratory and geophysical settings. Dating back nearly 50 years, Van
Atta and Chen [257] conducted an extensive atmospheric boundary layer (ABL) experiment
to measure up to fourth-order moments of atmospheric velocity fluctuations over the ocean.

Their study revealed some intriguing similarities, and differences, between what was observed

!The material presented in this chapter is accepted and in press as the following publication: DeMarco, A.W.
and Basu, S. (2017) Estimating Higher-Order Structure Functions from Geophysical Turbulence Time-Series:
Confronting the Curse of the Limited Sample Size, Physical Review E
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and the existing turbulence hypotheses [e.g., Kolmogorov and Obukhov 1941 (KO41), [138,
198]]. These findings led to increased efforts (see [15, 103, 241, 244, 250, 258, 273, just to
name a few]) to acquire extensive measurements of ABL flows in order to further explore the
statistical and dynamical features of turbulence (e.g., power-law scaling, nonlinearity in energy
cascade). At the same time, researchers in a myriad of other geophysical disciplines, from
oceanography (e.g., phytoplankton biomass distribution in turbulent coast waters [159, 224])
to magneto-hydrodynamics (e.g., intermittency in solar wind fluctuations [54, 115, 168, 210,
218]), initiated their own investigations in this intriguing research arena. Due to the lack of
modern instrumentation, the majority of the initial studies were conducted solely within the
Eulerian framework (by invoking the so-called Taylor’s hypothesis). Fortunately, several recent
contributions have attempted to fill the void in the Lagrangian framework (see [19, 55, 78, 252,
and references therein]).

Over the years, the utilization of higher-order statistics not only became common practice
for (in)validating various hypotheses against experimental findings, but it also enabled the
research community to gain a better understanding of different types of turbulent flows. For
example, many studies have been conducted which strive to make a distinction between active
and passive scalars [59, 70, 141] as well as contrasting atmospheric convection [5, 172] from
Rayleigh-Bénard convection [41, 57, 157, 230, 275]. For other illustrative examples, please refer
to the outstanding books by Frisch [95] and Tsinober [253].

In parallel with the analysis and characterization studies, a handful of pioneering works
focused on the development of cascade models with the inherent ability to capture the observed
higher-order scaling behaviors. These models ranged from a simplistic S-model which seeks to
resemble the intermittent behavior of turbulent cascade from a geometric point-of-view [97, 196]
to a more complex probabilistic model, which describes the energy cascade (multiplicative)
process within the inertial-range in a multifractal framework [39, 96, 165]. Likewise, a number of
other simplified dynamical models (e.g., shell models, stochastic Burgers equation, [27, 65, 122,

158, 200]) were developed to mimic a number of intrinsic traits of three-dimensional turbulence.
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From our perspective, this line of research is still far from being matured.

It is important to acknowledge that the aforementioned higher-order characterization and
related modeling activities are not only of importance from a pedagogical point of view, but they
are also beginning to make impacts in diverse practical applications, including (but not limited
to): combustion [51, 144]; wind energy [184], and atmospheric modeling [260]. We strongly
believe that the gamut of applications can be significantly broadened with further analyses of
various geophysical data sets. Unfortunately, the typical sample size of such data sets is orders
of magnitude fewer than their laboratory counterparts. This disparity in sample size poses a
serious challenge for higher-order statistical analyses using the traditional sample moments. In

this paper, we advocate an alternative approach to confront this challenge.

4.2 Limited Sample Size Problem

It is common knowledge in the turbulence research community that capturing higher-order
moments of turbulent variables can be rather difficult without a substantial sample size of
experimental data [12, 34, 94, 95, 219, 250, 259, 264, 267, 283]. In particular, the ability to
accurately estimate the moments can be directly related to the tails of the underlying probability
density function (pdf), which signify rare events [24].

Thus, in laboratory settings, it is customary to measure turbulence with upwards of 107
samples using hot-wire anemometry (sampling rate on the order of several kHz). However, ac-
quisition of hot-wire data in a natural geophysical setting is quite challenging. For example,
in the case of ABL field experiments, one needs to perform meticulous hot-wire calibration
at short regular intervals in order to account for the ever-changing, diurnally varying ABL
flow parameters [142, 170]. As a viable alternative, the ABL community widely uses sonic
anemometers (sampling rate of ~ 20 Hz) for measuring turbulent velocity fields. In contrast
to hot-wires, these sensors require much less periodic calibration and maintenance. However,
these instruments can only collect O(20-40) thousand samples during a measurement time win-

dow of 15-30 min. Publications, from as early as the 1970s, pointed out that such short time
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series are not adequate for estimating moments beyond fourth-order [250, 257]. Unfortunately,
one cannot circumvent this problem by simply using longer time-records owing to the frequent
interference of non-stationary and non-turbulent motions (a.k.a mesoscale motions). An ear-
lier work attempted to tackle this problem using cumulants [28]. It was demonstrated that a
cumulant-based approach can reliably estimate the so-called intermittency exponent [95] from
short ABL time series. However, the cumulants involve logarithmic functions of the velocity
increments; as such, they are more influenced by the peak of the pdf rather than its tails. Thus,
their usage in the estimation of higher-order moments is questionable. As an alternative, in
this paper, we illustrate a maximum likelihood-based moment estimation technique which can

provide statistically accurate higher-order moments from relatively short geophysical series.

4.3 Quantifying Uncertainty in Structure Function Estimates

It is customary to quantify the behavior of fine-scale fully developed turbulence, using structure
function (SF) analysis, see Eq. 2.2.

Many laboratory and geophysical turbulence studies have shown that the pdfs of velocity
increments, pdf [du|, are scale-dependent and change steadily within the inertial sub-range.
Specifically, these distributions have been shown to exhibit strong non-Gaussian behavior at
small increments, then become more Gaussian as separation increases [24, 31, 52, 167, 168,
234, 239]. A few years ago, Barndorff-Nielsen et al. [24] demonstrated that the normal inverse
Gaussian (NIG) distribution has the inherent ability to capture such scale-dependent traits in
a parsimonious manner. An illustrative example is shown in Figure 4.1. Here, following the
approach by Rydberg [217], we have numerically generated three NIG distributed variates with
different parameter settings, see Section 3.1 for details. This figure clearly attests to the fact
that the NIG distribution can indeed capture heavy-tailed (e), moderate-tailed (a), and near-
Gaussian () distributions with appropriate choice of parameters. In this work, without loss of

generality, we generated NIG distributed variates with g = 0 and # = 0. This choice was made
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Figure 4.1: NIG distributed variates with three different parameter combinations: (a) a =
0.1, =1, (b) a =1, =1, and (¢) @ = 2,6 = 2. For all these cases, the parameters p and
B are assumed to be equal to zero. For each case, 107 samples were generated using Rydberg’s
algorithm [217]. The distributions were normalized by the standard deviation os,. A Gaussian
pdf is overlaid (dashed line) as a reference.

so that Eq. 4.4 becomes analytically tractable [26] and reduces to:

— B (el) = 22 exp ()T (L) Ko (a). .
5= B (al’) ﬂ(ag)ag_lep(a)r( 1) e () (@)

Next, using the NIG distributed variates, we quantify the impacts of pdf shapes and sample
sizes on the uncertainty of the SF estimates. We consider a wide range of sample sizes (N) from
103 to 107 for each of the three pdfs shown in Figure 4.1. In order to obtain reliable statistics,
we generate 100 realizations for each case. Based on the numerically generated variates, we
compute SF using Eq. 2.2. Without loss of generality, we focus on the sixth-order SF (Ss).

The decision to consider Sg as a test statistic was not arbitrary. In turbulence literature,
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Figure 4.2: “Empirical” Sg box plots for three different NIG distributions with parameter
combinations: (a) @« = 0.1, = 1, (b) @ = 1,4 = 1, and (¢) a = 2,§ = 2. The parameters pu
and 3 are assumed to be equal to zero. The sample sizes (N) are varied from 10° to 107. One
hundred realizations are used for the construction of the box plots. The dashed magenta lines
represent the true Sg values based on Eq. 4.1.

there is considerable interest in the accurate estimation of Sg, since its scaling exponent is
directly used to determine the intermittency exponent, p* = 2— (4, which relates to the behavior
of the underlying non-Gaussian distributions.

The estimated (henceforth “empirical”) Sg values are shown in Figure 4.2 utilizing a stan-
dard box plot notation where 50% of the data lie within the blue “box” and the red line segment
within the “box” is the median value of the data. The “whiskers” (i.e., the vertical dashed line
segments) correspond to +2.7a, while the + are the outliers. The following observations can be

made based on this figure:

e For all the cases, with increasing sample size the S estimates converge towards the true

values as would be expected.

e For comparable sample size, the uncertainty of the S¢ estimate is much higher for the

heavy-tailed case than the near-Gaussian case; the moderate-tailed case falls in between.

o For small sizes, the Sg estimates are strongly biased for the heavy-tailed case. The bias
decreases for the moderately tailed case, while for the near-Gaussian case, the estimates

are close to unbiased.
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These ndingshave signi cant im plication on geophysicaldata analyses and regquire scrutiny
I to whether a collection of sam ples are robust enough to provide an accurate estim ation of a
speci ¢ higherorderm om ent. In a recent paper, Dudok Dudok deW it B3]1m ade an Interesting
contribution In this arena by borrow g deas fram the Extrem eValue (EV ) theory. H e proposed
a sin ple approach to com pute them axin um m om ent order (Pmq. ) orwhich reliable estin ation
of sructure function (Sp,,,. ) is feasible fora given spatialor tim e series. In the ollow Ing section,
using the aforem entioned N I3 distributed variates, we elbborate on Dudok de W it's approach

followed by a recom m endation for certain in provem ent.

4.4 Estimating p,., from Limited Data

Let us denote the rank-ordered (in decreasing order) absolute value of the velocity ncrem ents
as: = |0ulg, wherek = 1,...,N.Dudok de W it B3] showed that for smallvalues of k,

versus k ollow s the welldnown Zibfpower-law behavior:

1
k\ 7
kO (ﬁ) ; 42)

where, v* is known as the tail hndex (aka shape param eter). V ia analytical derivations (w ith

ocnem nor approxin ation), Dudok deW it B3] related v* to pmar as olow s:
1
Pmaz = \;’:J = 1, 4 3)
2

where the oor bracket denotes the integer part.

In Figure 4 3, the rank-ordered plts for three N I distributed variates are shown. In these
og-log plots, the pow er-law behavior is clearly discemible for an allvalues ofk . Follow Ing D udok
de W it's approach, v* values are estim ated using ordinary linear regression over the range of
10 < k < 1000. These valies along w ith the estim ated Py, values are reported n Tablke 4 1.

Asshown n B3], and illustrated here n Table 4 1, there isa clear dependence on Py, values
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Figure 4.3: Rank-order (a.k.a. Zipf) plots for NIG distributed variates with three different
parameter combinations: (a) « = 0.1,6 = 1, (b) @ = 1,4 = 1, and (¢) a = 2,0 = 2. The
parameters u and 3 are assumed to be equal to zero. The sample sizes (V) are varied from 104
to 107. The tail-indices (7*) are estimated for N = 10* (dot-dashed) and N = 107 (dashed) and
reported in the bottom-left corner of the plots.

Table 4.1: Tail-index (v*) and maximum moment order (ppma,) for NIG distributed variates of
varying sample sizes and with three different parameter combinations.

a=010=1|a=1Lé6=1]a=20=23

N ~* Do ¥* Pmaz i Prmaz
5x 10% | 0.583 0 0346 | 1 [0265| 2
1 x10* | 0.468 1 0259 2 [0209] 3
5x 10% | 0.344 1 0206 3 [0157| 5
1 x10° | 0.294 2 0185 | 4 [0.140| 6
5x 10° | 0.213 3 0146 [ 5 |0.117| 7
1 x 10° | 0.204 3 0.130 | 6 [0.109 | 8
5x 10° | 0.155 5 0.109 [ 8 |0.088 | 10
1 x 10" | 0.139 6 0.107 | 8 |[0.080 | 11

for the various sample sizes. Additionally, we also notice that the shape of the pdfs directly
influences pyq.. For instance, in the case of the heavy-tailed distribution (o = 0.1 and § = 1),
a minimum sample size of 107 is required in order to provide a reliable estimate of Sg. However,
for a near-Gaussian distribution (o = 2 and § = 2), only 10 samples are needed. We would
like to note that these results are in complete agreement with the ones reported in Figure 4.2.

Even though the overall approach of Dudok de Wit [83] is quite elegant and powerful,
the tail index estimation component is rather subjective and not statistically robust. It can

be significantly improved by employing one of the well-tested estimators from the field of EV
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theory [85] instead of using linear regression. In this work, we use the popular Hill estimator as
described in Section 3.6. For EV distributions (e.g., Pareto), estimated v* (or, related pyq. via
Eq. 4.3) are expected to stabilize (i.e., exhibit non-fluctuating behavior) with increasing values

of k.

20,
o 10* + 10°% = 108 « 107 e 10% & 10° = 10° + 107

20

e 10% » 10° = 10° « 107

Prnax

e —— >
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Figure 4.4: Hill plots for NIG distributed variates with three different parameter combinations:
(a) a=0.1,0 =1, (b) a=1,6 =1, and (¢) @ = 2,5 = 2. The parameters p and 3 are assumed
to be equal to zero. The sample sizes (N) are varied from 10* to 107. The dashed black lines
represent ppmar = 6.

To illustrate this technique, we present, in Figure 4.4, Hill plots using the same three NIG
distributed variates and range of sample sizes as in Figure 4.3. Even though it captures heavy
tails 2, a NIG distribution is not formally an EV distribution. Thus, perfect stabilization of the
Hill plots is not anticipated. Nonetheless, Figure 4.4(a), shows that all four curves smoothly and
slowly decrease below the dashed line, representing ppa. = 6. This behavior indicates that, for
this particular heavy-tailed distribution, even with 107 samples we cannot provide an accurate
estimation of Ss. However, as the pdf shapes are modified and tend to become more Gaussian,
the Hill plots [Figures 4.4(b) and 4.4(c)] reveal that higher order moments are achievable for
smaller sample sizes. Another important feature that Figure 4.4 portrays is that sixth-order
moment estimations pose issues with sample size less than 10° irrespective of the shape of the

distribution. In fact, this characteristic can also be seen through the “empirical” sixth-order SF

It is mathematically more accurate to say that the NIG distributions capture semi-heavy tails.
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calculations displayed in Figure 4.2.

In summary, the approach proposed by Dudok de Wit [83] and our suggested modification
provide guidelines into the p,q, values attainable by the conventional structure function anal-
ysis. In the next section, we advocate an alternative approach, based on maximum likelihood
estimation (MLE), which has the ability to reliably compute structure functions well beyond
Pmaz- However, to employ such an approach, one needs to make an assumption about the un-
derlying pdf of the velocity increments. In the present work, we assume it to be following the

NIG distribution [24].

4.5 Maximum Likelihood-based Structure Function Estimation

If the velocity increments follow the NIG distribution, the structure functions can be re-written
as:
o0
Sp=E (%) =f |xPEnre (% & 5 5 )ax: (4.4)
—c0
In this case, x equals u If the parameters of the NIG distribution are known (or estimated),
one can simply use a numerical integration approach to compute the integral.
However, in a typical laboratory or geophysical setting, these NIG parameters are not known
a priori. One can then use the method of moments approach (see Section 3.1) to estimate them,
but this technique has been shown to be unstable [131]. A more robust approach would be to use
the maximum likelihood estimator (MLE; [130, 186]), for details see Section 3.5. Since, MLE is
a computationally very expensive technique and occasionally requires numerous iterations for
convergence, in this work, we make use of the MME-based estimates as the initial conditions
for the MLE computations.

In order to illustrate the superiority of MLE over MME, we make use of the Kolmogorov-

Smirnov (K-S) statistic based on the empirical distribution function (edf; [73]):

D =sup |[Fepmp(x) — Fnic(x)] (4.5)
xT

48



where Fipp and F g are the empirical and estimated NIG distribution functions, respectively.
The results associated with a heavy-tail distribution (a = 0.1, = 1) are shown in Figure 4.5.
Without any doubt, for all sample sizes, MLE outperforms MME by having (i) lower (median)
values of D, and (ii) reduced uncertainty bounds of D. Similar comparative results were obtained
for moderate-tail and near-Gaussian pdfs as well (not shown here for brevity).

Within the MLE computation, we explored two types of numerical algorithms: Expectation-
Maximization (E-M) [80] and Nelder-Mead method [190]. Both these approaches produced near-
identical results (up to the fourth decimal points). Our implementation of the E-M algorithm
follows [130]. We chose this specific approach due to its simplicity and robustness for the NIG
distribution. A pseudo-code is included in Section 3.1. For the Nedler-Mead method, we used
a commercial MLE function from MATLAB™. Further details regarding this approach can be
found in Lagarias et al. (1998, [145]).

Using the idealized NIG distributed variates generated in Figure 4.2, we now apply the
MLE approach to find out if an improvement over the conventional approach is feasible. The
MLE-based Sg estimates are displayed in Figure 4.6 using the standard box plot notation as
before. Of note, the sample size range is reduced from 107 in Figure 4.2 to 10° in Figure 4.6
since MLE provides converged statistics with far fewer data samples.

There are distinct differences in results between Figure 4.2 and Figure 4.6. First of all, for all
sample sizes and pdf shapes, the estimated Sg values are nearly unbiased in Figure 4.6. Second,
the uncertainty bounds are significantly reduced in Figure 4.6 in comparison to the correspond-
ing box plots in Figure 4.2. In other words, the MLE-based structure function approach is much
more robust and more reliable in comparison to the conventional structure function approach,
especially in a small sample setting.

In the following section, we will investigate if this conclusion also holds in the case of

correlated samples.
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Figure 4.5: Box plots of K-S test statistic (D) comparing MME (left panel) versus MLE (right
panel) results. The following parameters are utilized to generate the random variates: a = 0.1,
f=0,u=0,and § = 1 (heavy-tailed). The sample sizes (N) are varied from 10® to 10°. As
before, 100 realizations are used for the construction of the box plots.
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Figure 4.6: MLE-based S box plots for three NIG distributions with parameter combinations:
() a=0.1,0 =1, (b) a=1,6 =1, and (c) @ = 2,5 = 2. The parameters p and 3 are assumed
to be equal to zero. The sample sizes (N) are varied from 10% to 10%. One hundred realizations
are used for the construction of the box plots. The dashed magenta lines represent the true Sg
values based on Eq. 4.1.

4.6 Effects of Correlation

To this point, our analysis has been focused on independent and identically distributed (i.i.d)
random NIG variates. However, in practice, the samples may be correlated. For example, in

the case of velocity increments, Anselmet et al. [12] and Huang et al. [117] reported scale-
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dependent temporal correlations. In order to quantify the impact of correlation on higher-order
moment estimation, we synthetically generated 100 realizations of correlated NIG variates. Each

realization is created via the following steps:

1. As before, generate i.i.d NIG variates (sample size of one million) using the approach by

Rydberg [217]. We assumed a moderate-tailed distribution ( =1, =0, =0,and =1).

2. Generate a red-noise series (sample size of one million) with a spectral slope between zero

and minus 1. The magnitude of this slope is randomly selected from a uniform distribution.

3. Perform simple histogram matching between the i.i.d NIG series and the red-noise series.
The resultant series preserves the NIG pdf accurately, and it is correlated. However, it

does not follow the exact correlation structure of the red noise.

Illustrative examples of i.i.d and correlated NIG variates are shown in Figure 4.6. Even

though they look distinctly different (due to correlation structure), both realizations follow

identical pdf.

0 2x10°  4x10° ) 6x10°  8x10°  1x10° 0 2x10°  4x10° ) 6x10° 8x10° 1x10°
1 2
(a) (b)
Figure 4.7: Realizations of i.i.d (top panel) and correlated (bottom panel) NIG variates. Both
realizations follow the same NIG distribution with prescribed parameters: =1, =0, =0,
and =1.
Let us denote each of the 100 correlated NIG realizations as: ugk),..., 1.15{?; where M = 108
and k varies from 1 to 100. From each realization, we extract a contiguous subset ugk) oy ugi)N_l;



wherei > land i+ N — 1 < M.W e vary the subsam ple size N from 10° to 10°. Shhce we
have a total of 100 realizations, for a speci ¢ value of N, we aloo get 100 subsam ples. These
subsam ples are used to estin ate Sg using the aforem entioned \an pirical" and M LE approaches.

These results are shown in Figure 4 8.
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Figure4 8: \Em pircal" (top panel) and M LE -based (bottom panel) Sg box plts for conelhted
N I3 variates. The follow ng param eters are utilized to generate the random variates: a = 1,
B=0,pu=0,andd = 1.The sample sizes (N) are varied from 10° to 10%. O ne hundred
realizations are ussd for the construction of the box plots. T he dashed m agenta lines represent
the true S value based on Eqg.4.1.

C om paring the results from Figure 4 .8 to the corresponding box plts In Figure 42, it is
clear that the uncertainty bounds have signi cantly increased for the correlated sam ples. A Iso,
the num ber of cutliers have Increased substantially. Stll, for this di cult scenario, the M LE-
basad estin ates outperform s the \an pirical" ones In temm s of bias and uncertainty bounds.
Tt is quite ram arkable that for all sam ple sizes, the M LE -based estim ates are unbiassd. Ik is
needless to say that of both the estin ates do converge to the true Sy valie for lrge sample

sizes; how ever, the convergence is slow er than the 1id soenario.
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4.7 Wind Tunnel Data

To further showcase the strength of the MLE approach, we utilize laboratory data from the
Office National d’Etudes et de Recherches Aérospatiales (ONERA) S1 wind tunnel. These
velocity measurements were obtained with a DISA 55M01 constant temperature system with
Wollaston wire (3 mm diameter and 0.35 mm length for all the air flows). The sample size for
this data is approximately (~ 13 x 10°) long with a sampling rate of 25 kHz. Following the
conventional turbulence analysis techniques, we have invoked Taylor’s hypothesis to convert
this time series to a spatial series and normalized the original series to have zero mean and
unit standard deviation. For further details on this data set and past ONERA S1 wind tunnel
experiments, please refer to [98, 127, 164].

Figures 4.9(a) and 4.10(a) depict pdfs of velocity increments for two specific temporal sep-
arations (7): 4 x 107 sec and 1.35 x 1072 sec, respectively. Given their distinetly different tail
behavior, we utilize them to evaluate the strengths (weaknesses) of the proposed MLE-based
structure function estimation approach. As before, we randomly selected 100 subsets of varying
sample sizes for both empirical and MLE-based moment estimations. We consider the Sg values
based on Eq. 2.2 using the entire data set as the “truth.”

For small sample sizes, the conventional estimates are quite uncertain (middle panels of Fig-
ures 4.9 and 4.10). In addition, for such cases, the median Sg estimates are significantly outside
the £ 10% uncertainty bound. In contrast, the MLE-based estimates offer low uncertainty for
all sample sizes (right panels of Figures 4.9 and 4.10). For the large 7 case, the MLE-based
median estimates are almost identical to the “true” value for all sample sizes. The performance
is somewhat poorer for small 7. In this case, the MLE-based median values are approximately
+ 10% lower than the “truth” for all sample sizes. For small sample sizes (N < 10%), the
MLE-based approach unequivocally outperforms the conventional approach. Based on these
results, we strongly recommend the geophysical community to utilize the proposed MLE-based

approach for analyzing data sets with limited sample size.
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Figure 4.9: Analyses of ONERA S1 wind tunnel data. Selected increment: r = 8.2 mm or
7 = 4 x 107 sec, (a) corresponding PDF with NIG-MLE fit, (b) “Empirical” Sg box plots,
(c) NIG-MLE Sg box plots. One hundred realizations are used for the construction of the box
plots. The dashed magenta line represent the Sg values based on Eq. 2.2 using the entire data
set. The dot-dashed lines represent an uncertainty of + 10% around the magenta line.
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Figure 4.10: Same a Figure 4.9, except for 7 = 277.8 mm or 7 = 1.35 x 1072 sec.
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4.8 Alternative Probability Density Functions

T hroughout this paper, we have den onstrated the strengths of the M LE -based approach to
estin ate higher-order m cm ents. For this purpose, we needed to m ake an assum ption about the
underlying pdf of ncrem ents. G ven its versatility n capturing pdfs of di erent shapes and
form s B6], we opted to use the NIG pdf.

W e acknow ledge that the NIG pdf has not been fully vetted by the turbulence research
comm unity at Jarge. Thus, its approprateness to represent velocity and/or scalar cram ents
for diverse types of ows ram alns to be con m ed. In the recent past, other types of pdfs have
been proposad (eg. B2, 56, 128]), and som e of than have aleady gahed popularity. T this
section, wewould ke to  nd out ifourM LE -based m om ent estin ation approach can be utilized
n conjunction w ith ancther type of pdf.

In this proofofconcept exercise, w e choose to use the log-nom alsuperstatistics (LN SS) pdf
B1, 32, 33] given its strikingly di erent form com pared to theN IG pdf. F irst, we generate 1iid.
NIG variates (@ = 1,3 = 0,u= 0,8 = 1) of di erent sam pk sizes. W e then estin ate S5 by
utilizing theM LE approach.H ow ever, unlikebefore, wem akean (hcorrect) assum ption that the
underlying distribution is governed by the LN SS pdf. The results are shown In Figure411.The
top-panel plot show s that the di erence between the N Iz and LN SS pdfs are ram arkably an all
(extceptnear the tails). V isually (w ithout using any m etrics), both the pdfs appear to be equally
representative of the generated random variates. M ore surprisingly, the LN SS-M LE approach
overestin ates the true S valuie only by a smallmargh (see bottom panel of Figure 411).
Undoubtedly, the m ost In portant nding is that the estim ation bias ran ains hdependent of
sam plke size. Thisresult recon m s the strength of the proposed M LE approach for sm allsam ple

setting.
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Figure 4.11: Top panel: comparison of fitted NIG and LNSS pdfs for i.i.d NIG variates. The
sample size is 105. Bottom panel: MLE-based Sg box plot for i.i.d. NIG variates with the (in-
correct) assumption of LNSS as the underlying pdf. Due to high computational costs associated
with numerical integration of the LNSS pdf, the sample sizes (N) are only limited to 10% in this
example. The following parameters are utilized to generate the random variates: a = 1, = 0,
g =0, and § = 1. One hundred realizations are used for the construction of the box plot. The
dashed magenta line represents the true Sg value based on Eq. 4.1.

4.9 Concluding Remarks

Maximum likelihood estimation (MLE) is an age-old technique and is utilized in countless dis-
ciplines. For reasons unknown, the turbulence community has not leveraged on this statistically
robust approach for the estimation of higher-order structure functions. In this work, we demon-
strate that unbiased estimation of sixth-order structure function with relatively small samples
(less than 10%) is feasible with MLE, whereas, the conventional approach fails under these
circumstances. Moreover, the unbiasedness of the MLE approach is not affected by correlation
within the samples. Last, this approach performs remarkably well for two entirely different types
of pdfs: normal inverse Gaussian and log-normal superstatistics. In our future work, we will con-
tinue to investigate the prowess of the MLE-based higher-order moment estimation approach
by systematically using other observed data sets from turbulence to larger-scales motions. Ad-
ditionally, we will inter-compare various potential pdf candidates using rigorous metrics (e.g.,

Kolmogorov-Smirnov and Anderson-Darling).
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Chapter 5

Intercomparison of Probability
Density Functions of Small-Scale

Velocity Increments

5.1 Introduction

The understanding and characterization of turbulnce beghs fiom a ne scalk perspective.
It is believed that turbulence within the socalled mertial range (IR ) béhaves In a universal
m anner and can possbly be predicted from a statistical perspective. H owever, as discussed
i Chapter 2, we are still lacking a general consensus nto w hether or not turbulence can be
represented by a universal underlying pdf. The i plications of having this know kedge extends
beyond the research and continues to be of great In portance to m any application mchdng
w Ind energy, m esoscale m odeling and optical wave propagation. In this work, an exam nation
nto the an allscale velocity increm ent pdfs w ill be conducted utilizing high R eynolds num ber
(RE) data obtaned from controlled boratory (w nd-tunnel) and near-surface atm ogpheric
environm ents.

W ithin this study, we showcase four unigue m odel pdfs, as htroduced in Chapter 3, and
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their ability to fit the experimental data. With the use of maximum likelihood estimation
(MLE) techniques and two robust Goodness of Fit (GoF) metrics, we quantitatively reveal
the accuracy of the fits. To delve further into the pdf model, we also display the variations
of the parametric values (i.e., @, §, etc.) over a range of spatial scales to highlight some of
the similarities and differences between the turbulence datasets. In the following sections, we
will briefly introduce the datasets for this analysis. Then, the need to utilize a GoF metrics
to quantify the accuracy of the model will be discussed. In the final section, we will test our
estimation against empirical pdfs from two turbulence datasets and reveal the GoF results as

well as explore the scale-dependent variation in the pdf parameters.

5.2 Description of Data

For this study, two different velocity series are analyzed. Using both laboratory and atmospheric
data provides additional information regarding impacts of external forces and universal qualities.
Therefore, it is important to distinguish between the two sets of data. First, we utilize a high-
quality 30 min long (~ 18 x 10° data points) high RE turbulence series collected at the Surface
Layer Turbulence and Environmental Science Test (SLTEST) facility located in the western
Utah Great Salt Lake desert under near-neutral atmospheric condition [142, 170]. For typical
small-scale atmospheric turbulence measurements a maximum of 30 minutes data is used which
is believed to ensure stationarity of the flow and minimizes the larger scale influences. A fast-
response (10 kHz) hot-wire sensor was used at a height of 2.1 m above ground level. Various
characteristics of this series include integral time scale (7; = 5.71 s) and length scale (L; =

34.22 m) as defined in Eq. 5.1 as:
o0
T = / Bl (5.1a)
0

L = T <E, (5.1b)
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where R(7) is the autocorrelation function. Next, we used a velocity data set from the Office
National d’Etudes et de Recherches Aérospatiales (ONERA) S1 wind tunnel as described in
Chapter 4. This data set was utilized in the previous chapter. For further details, please refer
to [98, 127, 164]. We assume stationarity in both instances, therefore we also invoked Taylor’s

hypothesis to convert this time series to a spatial series and normalized the original series by

zero mean and standard deviation ( “= , which is typically performed in turbulence research.
= ypically p

Table 5.1 shows a summary of the mean flow characteristics from the two experiments.

Table 5.1: Mean Flow Characteristics of the Measurements. U is the mean velocity, o, is the
standard deviation, T; and L; represent the chacteristic time and length scale, respectively and
f is the data sampling frequency.

Experiment U(ms™) o, (ms™!) T;(s) L;(m) f (kHz)
SLTEST 5.99 0.74 571  34.22 10
ONERA wind tunnel 20.55 1.70 0.10 2.02 25

5.3 Structure Function Analysis

Prior to discussing the pdfs of the velocity increments, it is important to observe the typical
second-order structure function (S) representation of the turbulence data in order to gain
insight into the traditional scaling behavior. Figure 5.2 shows S5 for the two datasets and
reveals that in fact there is a discernible IR for both datasets. The clear (2 ~ 0.70) scaling
regime can be reliably estimated between the two vertical dotted lines and it is confirmed by the
local slope figures (inset). This scaling exponent also depicts the deviation from K41, (3 = 2/3,
which is an indication of small-scale intermittent behavior within both datasets. Additionally, a
more pronounced dissipation range for the high RE atmospheric data and a wider scaling regime
within the IR for the wind tunnel experimental data can be observed. Finally, the atmospheric
data, SLTEST, has a narrower scaling range compared to the ONERA wind tunnel data which

we believe is due to the uncontrolled, natural environment, affected from large-scale motions
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and anisotropic forcings (i.e., buoyancy), while the wind-tunnel experiment does not possess
external factors.

Within in the plots there are three red dots (e). The middle dot is within the IR while the
other two represent the smaller (far left dot) and larger (far right dot) scales. Each of those
selected scales represent a single velocity increment pdf and will be used to further examine
how they differ over different spatial separations, r (or equivalently temporal separation, 7).
The differences for the r values between the sites is due to the sampling frequency, but they

approximately correspond to the same turbulent regime.
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Figure 5.1: Second-order structure function (S2) as a function of normalized spatial separation
(r/L;) from turbulence series a) SLTEST [142] and b) ONERA-Modane S1 wind tunnel [98].
The insets depict the corresponding local slopes (¢2 = d(log(S2)/d(log(r/L;)) from Sz with the
dashed line representing the expected IR scaling exponent, {2 ~ 0.70. The scaling exponent can
be reliably estimated within the vertical dotted lines. The red dots were selected to represent
three distinctly different regimes within the turbulence signal.
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5.4 Probability Density Function Results

Next, the following figures depict the pdfs of the normalized velocity increments for the two
different datasets over three ranges of normalized spatial separation (r/L;), as indicated by
the red dots in Figure 5.1. Also, overlaid in these figures are the four pdf models that were
estimated based on the observed data using the approaches discussed in Chapter 3. The first
observation as shown in Figures 5.2 and 5.3 via a log-linear representation is that there is
a clear deviation from a Gaussian distribution for small separations (Figures 5.2a and 5.3a).
However, as r increases the pdfs begin to approach Gaussian distribution. Additionally, there
is also a marginal negative skewness that is discernible in these plots, as indicated by the
slight leftward shifting of the tails. As discussed previously, these features are not surprising
and are well documented. Visually, all four models fit the observed pdfs to some degree of
accuracy; however, there are subtle differences that should be noted. For instance, Figures 5.2a
and 5.3a, representing small separation, the GHSST model shows a drastic over-prediction near
the tails of the distributions, which is also observed at larger separations (Figures 5.2¢ and 5.3c).
Furthermore, the VG model in Figures 5.2a and 5.3a, depicts a significant under-prediction near
the tails resulting in a linear and rapid decay from high to low probability. The remaining fits

(i.e., NIG and LNSS) are quite accurate and may be considered as reliable estimations.

5.5 Goodness of Fit Techniques

Though it is typical to visualize pdfs of increments in this fashion, certain aspects of the pdf
models, do not capture the full empirical distribution as accurate as they appear. A prevalent
and widely-employed method to explore the quantitative differences between empirical distri-
bution function (edf) from a sample and a hypothesized cumulative distribution function (cdf)
are metrics referred to as Goodness of Fit (GoF) test. Interestingly, within the turbulence lit-
erature this form of statistical evalution is severely lacking. To perform these tests, one needs

to convert the pdf into an edf. Let x1 < 22 < ... < x,, be the order statistic of a random sample
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Figure 5.2: The pdfs of normalized velocity increments (éu/os,) corresponding to r/L; =
3.5x 1074, r/L; = 3.5 x 1073, and r/L; = 5.4 x 1072 are shown in the left, middle, and right
panels, respectively for the SLTEST atmospheric data. The equivalent 7 values are shown in
the legend. The empirical pdfs are then fitted using MLE with the four distributions described
in Chapter 3. The dashed line in all figures designate the Gaussian distribution for reference.
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Figure 5.3: The pdfs of normalized velocity increments (du/os,) corresponding to r/L; =
2.0x 1073, r/L; = 3.0 x 1072, and r/L; = 5.1 x 10~! are shown in the left, middle, and right
panels, respectively for the ONERA wind tunnel data. The equivalent 7 values are shown in
the legend. The empirical pdfs are then fitted using MLE with the four distributions described
in Chapter 3. The dashed line in all figures designate the Gaussian distribution for reference.

from a given pdf (e.g., pdffdu/os,]). The edf is a step function calculated from a given sample

of data, of size n, that provides an approximation of the underlying data:

number of samples observations < x
Feymp(z) = = ’

—co<zr<oo. (5.2)

As briefly introduced in Chapter 4, the Kolmogorov-Smirnov (K-S, see Eq. 4.5) statistic is
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one of many quantitative tests that is performed, based on the edf. Though, this edf technique
is more robust since it uses the full set of data, compared to the alterative GoF tests that are
commonly utilized using histogram binning (e.g., Pearson’s y? test). However, the choice of
bin width and total number of bins has been shown to produce varying results and requires
knowledge of the underlying distribution [3, 66, 222]. However, over the years, there have been
a handful of proposed guidelines to be used, yet these approaches still have their shortcomings.
Below, we will show an example to illustrate the impacts histogram binning has our the GoF
estimation using three known binning techniques. The following itemized list depicts three
formulations of binning options, which will be tested using the ONERA dataset. For each of
the methods, the dynamic range (i.e., the minimum and maximum bin value) was set to the

minimum and maximum of the velocity increments for the given sample data.

1. Moore (1986, [183]): B = 2n?/°, where n is the sample size and B is the total number of
bins . The bin width h is determined by [WL where the ceiling bracket denotes
the integer part [261].

2. Scott (1979, [222]): h = 3.49sn~/3, where s is the standard deviation and h is the
proposed bin width.

3. Freedman and Diaconis (1981, [90]): h = 2% IQR(x)n~*/3, where IQR is the interquartile
range of the random variable, x.

Figure 5.4 shows two examples using histogram binning for determining the K-S statistic. In
addition to the binning concerns addressed above, the use of MME as a estimation technique can
also be shown as a limitation, also addressed previously in Chapter 4. For instance, Figure 5.4a
shows the K-S test results (D) for the ONERA data plots as a function of r/L; using the Moore
(1986) method, item (1). Each curve represents a different model which was shown in the pdf
plots in Figures 5.2 and 5.3. From a test statistic perspective, the models are all different and
more or less in agreement with the visual inspection as shown in the pdf figures (i.e., NIG is
better than VG and GHSST for smaller scales). However, notice that LNSS-MME is the worst

from a statistical point of view, despite being very accurate from a visual perspective. This
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Figure 5.4: a) K-S statistic histogram binning of ONERA data compared against the various
pdf models as a function of 7/L; on a log-linear plot. b) K-S evaluation using various binning
techniques (described in itemized list above) for the ONERA turbulence dataset comparing the
NIG distribution as a function of separation r/L; on a log-log plot. The black symbols in (a)
correspond to the blue curve in (b).

is due to the inaccuracy that exists using the MME techinque as compared to MLE, which
was previously observed in Section 4.5!. Therefore, the use of MLE is the optimum choice for
model estimation. Also, as addressed in Section 3.4, LNSS model is extremely inefficient using
MLE and therefore, will not be utilized to the same extent as the other models. Now, in terms
of binning issues specifically, Figure 5.4b showcases the K-S test using three different binning
methods for ONERA data comparing against the NIG pdf model fit. Clearly, using different
binning methods leads to different statistical results. So, to avoid the ad-hoc assumptions with
histogram binning and the poor accuracy in the result, the remaining portions of this work will
be conducted using edf-based statistics.

The following techniques are widely utilized in the field of statistics to compare the fit of
a model to observations. For the purpose of this study we have elected to choose two, the K-S

and Anderson-Darling (A-D) test statistics. The K-S test is a supremum test statistic which

'In all the previous studies (e.g., [31]) which have used this model, they have only explored the MME-based
estimation technique.

64



is based on the maximum distance between the empirical and population distributions (e.g.,
NIG). This test only provides information regarding a single maximum value, instead of testing
for the entire fit of the data. Thus, the best fit is obtained as D — 0. More details were discussed
in Chapter 4.

An alternative test called Anderson-Darling (A?) test is a quadratic statistic used to deter-
mine whether or not a given sample of data, of size n, is drawn from a particular distribution

[9, 73, 160], see Eq. 5.3:
#=n [~ {Four() - F@)} vla)dP(a), (53)

where ¥(z) = [F(z)(1- F(z))] "' and F(z) is the estimated distribution function of the model.

We elected to apply this statistic because it puts more emphasis and weight on the tails
of the distributions, which is important for the higher order moment estimations [119, 213].
Using these metrics, we evaluate the quality of the model fit to the empirical data. Tables 5.2
and 5.3 depict the corresponding statistics for Figures 5.2 and 5.3, respectively. From the K-
S statistic (D), Table 5.2 shows that NIG outperforms VG and GHSST for all the r/L; value
except 5.4 x 1072, While, the A-D (A?) test reveals a very similar conclusion, though with larger
magnitude results. These higher values are expected as A? depends on the sample size and puts
more weight on the tails. Also, as r/L; increases the statistics begin to improve, suggesting that
the model fits are more in line with the observations. However, for GHSST the A? diminishes
slightly as the tails of this distiribution never fully line up with the observations. In Table 5.3,
not surprisingly, the results reveal almost identical trends. This finding demonstrates that the
two datasets have similar traits and the models are able to capture this feature. From the
comparison of this subset of pdfs, the NIG model reveals the most reliable fit of the turbulence
pdfs. Next, we will show how the models compare over the range of scales.

Figure 5.5 shows the K-S statistics for the atmospheric dataset SLTEST in (a) and the wind

tunnel data in (b). Again, the trends and magnitudes are nearly the same between the datasets
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Table 5.2: Goodness of Fit Test for SLTEST data, corresponding to Figure 5.2 for three select

separations
SLTEST
pdf Model r/L; i3] P

35x 101|311 x107% | 2.11 x 10?

NIG 35x 1073 | 1.87 x 1072 | 4.35 x 10?
54x 102 | 1.46 x 1073 | 2.42 x 103

Ve 35x10°1 | 567 x107° [ 1.23 x 10?
35x10°° [ 241 x 1072 | 2.35 x 10°

54x 1072 [ 834 x 1077 [ 1.67 x 10°

3.5x 1077 8.93 x 10~° | 4.60 x 10°

el 35x 103 | 5.38 x 1072 | 4.55 x 10°
54x 1072 [ 3.00 x 1077 | 5.38 x 107

Table 5.3: Goodness of Fit Test for ONERA data, corresponding to Figure 5.3 for three select

separations
pdf Model r/L; 2] Sl 12

20x 1073 [ 1.70 x 1073 [ 1.17 x 10°

NIG 3.0x10°2[1.28 x 10723 | 5.52 x 10°
51x 1071 [ 1.96 x 1073 | 3.95 x 10°

VG 20x 1072 [ 492 x 1073 | 3.66 x 10*
3.0x10"2[1.99 x 1073 | 8.52 x 10*

51x 101 [ 1.37 x 1072 | 4.95 x 10%

20x 1073 | 6.20 x 1073 | 1.96 x 10°

GHOBL 30x10"2[398x 1073 [ 2.32 x 10°
5.1 x 10~ [ 2.93 x 1073 | 4.00 x 10°

and the models. At the smallest scales the NIG model can capture the velocity increments more
accurately than VG and GHSST. As separation increase and through the IR the model fits
gradually improve, though NIG is outperforming. Then at larger 7/L; as the pdf tends towards
a Gaussian distribution, the models are more in line with one another. This re-confirms the
results found in the tables above and shows the full trends through the range of turbulent scales.
Now, that we have identified NIG as the model of choice for these datasets, we will look closer
at the parameters of the model (a, 3, i, and &, see Section 3.1 for details) to see how they vary

as a function of r/L;.
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Figure 5.5: KS plots for the different distribution as a function of normalized separation dis-
tance (r/L;) for SLTEST (a) and ONERA (b). For these computations, the velocity increments
are not normalized. The inertial-range scaling exponents can be reliably estimated within the
vertical dotted lines (SLTEST) and vertical dashed lines (ONERA).

Figure 5.6 shows the dependence of the four estimated NIG parameters for the two datasets
SLTEST and ONERA on r/L;. Figure 5.6a depicts a parameter which controls the steepness
of the pdf. Clearly, there are difference between the two datasets at small scales indicating
heavier tails near the dissipation range for the higher RE atmospheric data as compared to
the laboratory experiment. However, as the scales increase near IR, o becomes more consistent
between the datasets suggesting universal features within the IR. The 3 parameter (Figure 5.6b)
which depcits skewness reveals that the atmospheric measurements (SLTEST) has a more
negatively skewed behaviour in the increments, but as r/L; increases the both approach zero
and are nearly identical within their respective IR as demarcated by the vertical dashed and
dotted lines. Figure 5.6¢) shows the u parameters as a function of r/L; is an indication of the
centrality of the peak. Both datasets are nearly negligible at small scales, but increase through
the IR and into the large scales. The atmospheric data remains closer to zero with increasing
scales compared to the laborartory. For all practical purpose, the p parameter, which is a

measure of centrality, is more or less neglected as it is close to zero thoughout the IR and small
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scale ranges. Finally, &, which is the peakedness or scale parameter, has fairly consistent trends
between the two datasets. These results suggest a quasi-universal behavior of the small-scale

velocity increments between two different sets of experiments.
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Figure 5.6: Dependence of the NIG pdf parameters on the normalized separating distance
(r/L;) for SLTEST (red-solid line) and ONERA (blue-dashed line). For these computations,
the velocity increments are not normalized. The inertial-range scaling exponents can be reliably
estimated within the vertical dotted lines (SLTEST) and vertical dashed lines (ONERA).
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56 Conchigion

The turbulence data presented and analyzed here shows remarkable similiarities between the
two distinctly different experimental settings. The pdfs of each dataset revealed highly non-
Gaussian distributions at small scales outside of the IR with moderately heavy tails within
the IR. As the scales increased near the energy input scale the distributions become near-
Gaussian which is confirmation of the results from previous studies. Similarly, the pdf models
showcased in this study provided evidence that these unique pdf features can indeed capture and
represent turbulence datasets with great accuracy. However, the difference between the models
were explored with the use of robust GoF statistics. Our results indicated that a member of
the generalized hyperbolic distribution family, normal inverse Gaussian (NIG), provides the
most reliable estimation to pdfs of velocity increments over a range of turbulent scales. As a
result, we were able to present the parameters of NIG as a function of separation distance,
which revealed similar features between the datasets and near universal characteristics with
the IR. However, as flow characteristics change, a question may arise as to how do these pdf
features vary. Therefore, in the next chapter, an examination into the impacts of stability will

be discussed.
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Chapter 6

Characterization of Small-Scale
Velocity and Temperature
Increments in Stably Stratified

Boundary Layer Flows

6.1 Introduction

In this chapter, we showcase the impact stability has on boundary layer flows by investigating
the small-scale velocity and temperature increments from a high-quality wind tunnel experi-
ment with modifying stable stratification [201]. The atmosphere is fundamentally a stratified
environment, therefore it is important to gain insight into possible implications of variations in
stability conditions. From a physical perspective, the presence of stable stratification implies
that when a fluid parcel is displaced from its equilibrium position, a restoring force will act on
it due buoyancy. Two important conditions exist in these type of flow scenarios. First, under
stratified environments the vertical motions are suppressed and the turbulent flow tends to be

more anisotropic or restricted in the vertical direction, which suggests possible variations in
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the scaling characteristic. In 1959 and 1962, Bolgiano [45, 46] hypothesized that a secondary
scaling regime exists at larger scale outside the IR due to stable stratification referred to the
"buoyancy sub-range”. Unlikely K41, which assumes isotropic and homogeneous conditions
and energy cascade depending on energy dissipation rate, Bolgiano [45, 46] considered poten-
tial temperature variance flux (98'2/8t), as a key variable. Based on dimensional analysis he
proposed that scaling within the buoyancy sub-range would scale as ~ 3p/5 and ~ p/5 for
the velocity and temperature, respectively. Since this theory, many have experimentally tested
and have found similarities in the scaling results (e.g, [4, 5]). Furthermore, when stability con-
ditions are enhanced internal gravity wave formation and Kelvin-Helmholtz (KH) instability
are supported [253] and give rise to further non-linear interactions. For instance, internal wave
breaking occurs in the presence of stable stratification and is an important generation source
for turbulence within geophysical flows. To date, our understanding of stably stratified environ-
ments remains incomplete which leads to poor prediction of these conditions in our atmospheric
models [163, 271], thus further examination is required.

The impacts stable stratification has on turbulence has been widely studied over the years
[6, 29, 45, 46, 58, 114, 162, 231, 251, 265, and references therein]. However, from a pdf per-
spective only a handful of studies have been conducted within atmospheric flows. For example,
Thoroddsen and Van Atta (1992, [251]) found that “...the temperature gradient pdfs exhibit
very distinct exponential tails over a wide range of turbulent RE number, while the correspond-
ing pdfs of the temperature fluctuations show close to Gaussian behaviour.” Likewise, Chu et
al. (1996, [67]) examined various surface-layer velocity and temperature fluctuation pdfs and
revealed similiar results. Furthermore, Alisse and Sidi (2000, [6]) examined the effects stability,
in the free-troposphere, has on the scaling characteristics for horizontal wind and temperature
within vertical atmospheric profiles. They showed two distinct regimes for velocity fluctuation
pdfs depending on whether or not the flow was calm or turbulent, while the temperature in-
crements pdfs remained close to each other regardless of the flow conditions. Also, their results

showed that the temperature fluctuation pdfs had heavier tails compared to wind fluctuations.
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Additionally, Vindel et al. (2011, [265]) found that as stratification becomes more stable for
near-surface observations, intermittency decreases or in other words the pdf tails of small-scale
velocity increments are less heavy, which is a different results from Alisse and Sidi. Investi-
gations under more controlled environments, such as wind tunnel and large-eddy simulation
experiments, revealed that the scalar (i.e., temperature) and the velocity gradient pdfs de-
part from Gaussian and exhibit strong exponential tails [123, 177]. Despite these studies, very
few have fully examined the increment pdfs under various stable conditions, thus this work
will attempt to uncover features of the temperature and velocity increment pdfs in a systemic
manner.

Building on our previous results, this chapter will estimate the increment pdfs with the
normal inverse Gaussian (NIG) and generalized hyperbolic skewed student’s t (GHSST) dis-
tributions. From this perspective, we are able to estimate the four-parametric distribution to
reveal the variations in the velocity and temperature increment series as a function of stabil-
ity. Therefore, a major objective of this study is to determine, through analysis of pdfs, as
to whether or not there is evidence of variations in the turbulent characteristics as stability

condition vary. First, we will introduce the dataset used for this study.

6.2 Description of Datasets and Methodology

Generally, wind tunnel experiments are configured for neutrally stratified flows [272]. For this
analysis, however, we examine the data from a high-quality wind-tunnel experiment conducted
by Ohya (2001, [201]), for which he explored the turbulent flow characteristics (i.e., turbulent
intensities and fluxes) for a variety of stability conditions, from near-neutral to strongly stable.
The increased stability was imposed by modifying the temperature structure, such that the
floor was gradually cooled to around 10°C, while the flow aloft was heated to 40-50°C resulting

in eight different stability classes. The range of stability in terms of bulk Richardson number,
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Eq. 6.1 is between 0.12 and 1.31 from near-neutral to strongly stable, using:

_ ghA©

e ——— -l

Rip,
where A© is the temperature difference between surface and ambient air, ©¢ is the average
absolute temperature over the whole boundary-layer depth (h), Uy is the ambient velocity and
g is the gravity constant. Also, from a RE perspective, the flow configuration changes from
a large RE; of ~ 50,000 to a small value of ~ 25,000. The itemized list below provides some
of the details pertaining to the experimental set-up, more details regarding this wind tunnel

experiment can be found here [201, 202]:

e Measurements of temperature and velocity were taking using X-type hot-wire and I-type
cold-wire.

e Sampling rate of 500 Hz with a low-pass filter of 200 Hz applied with a sampling period
of approximately 100-150 sec leading to ~ 50,000 data samples per level.

e The turbulent quantities were measured 9 m downstream from the in-flow source.

e There were 20 measurement levels from 0.005 m to 0.6 m with an average boundary layer
height estimated around 0.45 m.

e For this analysis, we only considered data from within the logarithmic sub-layer, which
we determined using similiar techniques as [62] which resulted in data from 0.04 m to 0.36
m.

This extensive dataset provides a myriad of flow situations conducive to examining the
behavior of velocity and temperature increments of a range of separations. To illustrate the
differences between various stability regimes, Figure 6.1 depicts two time versus height plots
of temperature fluctuations (I" = T — (T)). Under near-neutral conditions (left panel), the
temperature fluctuations remain random in appearance throughout the lower portion of the
boundary layer for the entire measurement period. However, as stability increases (right panel)
evidence of a wave-like pattern is present in the middle of the domain. This provides visual

confirmation of different flow characteristics between the experiments.
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Figure 6.1: Time versus height plot of the temperature fluctuations (T") for two different flow
configurations a) near-neutral and b) moderately stable.

However, in lieu of utilizing Ohya’s eight stability classes for our analysis, we elected to
apply four alternative stability classifications based on the local Obukhov length and the height
above ground. According to Nieuwstadt (1984-1985, [192, 193, 194]) the use of Monin-Obukhov’s
local similarity theory (Eq. 6.2) is a more fundamental length scale under stable stratification.
From this we can then use a “universal” function of a single, dimensionless stability parameter
(¢ = z/A) as a revised stability class structure, see Eq. 6.2:

B = —Ou? ,
rg(w'e’)

(6.2)

where A is the local Obukhov length scale, u, = (W'~ + v'w'*)/4 is the friction velocity, k is
the Von-Kérman (assumed as 0.4), and © is the mean temperature. A similar approach was
used in Basu et al. (2006, [29]). For this work, the breakdown of the four new stability regimes
along with the number of time series measurements within those classes are shown in Table 6.1,

where S1 through S4 range from weakly stable to highly stable conditions, respectively.
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Table 6.1: Number of samples in each stability class

Class Stability Wind Tunnel

() Measurements
S1  0.00-0.25 16
S2  0.25-0.50 17
S3  0.50-1.00 16
S4 > 1.00 17

6.3 Probability Density Function Model Fit

As a first illustrative example, Figure 6.2 shows the median velocity increment pdfs at small
scales for the four different stability conditions. To compute the median pdf, we took the
median of all the data at 7 = 0.006 secs for the 16 time-series representing S1 (weakly stable)
and plotted the corresponding pdfs (e.g., Figure 6.2a). Overlaid on each figure are NIG and
GHSST estimates along with a Gaussian distribution. An initial observation is that the two
models provide an accurate representation of the observed data regardless of the stability class.
Also, all of the observed data appear to moderately deviate from Gaussian, however, not nearly
as significant as what was indicated in the previous chapter. This suggest that the amount
of intermittency in this experiment is not as significant and the RE values are less. However,
there does appear to be marginal differences between each of the stability regimes ranging from
moderately heavy tail for the weakly stable environment (Figure 6.2a) to light tailed distribution
in the strong stability case (Figure 6.2d). Given the change in stability one would expect
a change in the velocity increment distribution at small scales. For instance, with increased
stability, temporal and/or spatial concentration of the small scale turbulent structure(s) (i.e.,
internal intermittency) become surpressed, which can be seen here.

Furthermore, we also observe a slightly more negatively skewed pdfs as stability decreases.
Typically, experimental evidence suggest that the skewness factor (see Eq. 2.2) is proportional
to RE of the flow, ranging from -0.3 to -0.7 [181, 243, 264, 273]. This quantity is also considered

to be a direct measure of vortex stretching and related to the energy transfer from large to small
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Figure 6.2: Median velocity increment pdfs for four different stability classes using Ohya wind-

tunnel data: a) S1, 0 < ¢ < 0.25; b) S2, 0.25 < ¢ < 0.50; ¢) 83, 0.50 < ¢ < 1.0; and d) $4, ¢ >
1.0.

scales. Therefore, with increased skewness (in the negative sense) the 3-D turbulence features
are thought to exhibit increased stretching of the vortex elements, whereas when skewness
decreases (when stability increases) the opposite effect occurs. Since, in this experiment the RE
decreases with increased stability our results are consistent with previous findings and further
suggest a dependence on the velocity increments relative to the stability conditions.

In regards to the temperature increments under varying stable stratification, in Figure 6.3
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Fiure 6 3: Same as Fgure 6 2 except the m edian tem perature ncrem ent pdf.

we see the pdfmodels (NIZ and GHSST ) again are capabl of estim atihg the various features
of the tam perature increm ent pdfs even though heavier tailked and skewed features of the dis-
tributions are present. This skewed behavior aleo continues to be present as stability ncreases
w ith only a m nor decrease as strong stability conditions are im posad. It was observed by Stew -
art (1969, P43]) under a strati ed atm osphere that the skewness factor for scalar dervatives
(@0/3t) was on the order of unity (ie., -1), which is far fram a value of zero required for local
isotropy. These asymm etries n the pdfs are thought to be generated by the m ean tem pera-

ture gradients associated w ith the ow boundary conditions. [17, 112, 176, 235, 238].M oreover,
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when examining the scalar series a consistent ramp-cliff feature is shown, see Figure 6.4 for
a comparison between a past experiment and our work. These sudden negative jumps in the
temperature field are believed to contribute to the skewness we observe here. Clearly, there
are similar temperature qualities that are present in boundary layer flows that contribute to
these skewed pdfs. Furthermore, from a physical perspective, these features are attributed to
a temperature front indicated by cool and warm fluids entrained by the two counterflowing
structures [13, 269]. The ramp-cliff behavior is a large-scale feature, which are influenced by
boundary conditions [132], on the order of the integral scale, while the sharp leading edge is

evident in the small-scales. This omnipresent characteristic of scalar fields is the cause for the

anisotropic nature and the heavy tailed features in the increment pdfs.
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Figure 6.4: Temperature ramp-cliff features from a) Sreenivasan (1979, [240]) b) Series segment
from our analysis, Ohya 2001.

6.4 Stability In pacts on the P robability D ensity Functions

Now that we have shown the models are able to fit the distributions well, we can then evaluate
the velocity and temperature increments over a range of separation and stability conditions
using the various parameters of the models. For brevity, the NIG model will be used since
visually this distribution reveals the most accurate fit to the data.

For each stability class, the estimated NIG model parameters were isolated and binned for
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the range of separations (7) from 0.006 sec to 0.2 sec. From the binned data, we then took the
median value (50th percentile) of the parameters for each separation and presented the results
in Figures 6.5 and 6.6 for the velocity and temperature increments, respectively. For these
computations, the increments are normalized by their respective standard deviations (i.e., o5, ).
Also, only the o and [ parameters are shown here since they describe the tail and skewed
features of the distribution, as discussed in Section 3.1. Figure 6.5a shows a parameter for the
four stability classes. At small scales, the tails become lighter with increased stability since « is
inversely proportional to the heaviness of the tails (i.e., small « signifies a heavy tail). However,
as separation increases the reverse occurs and the increased stability contributes to a heavier
tail. In other words, the intermittency of the flow is stronger (resulting in heavier tails) at
larger scales when stability conditions are enhance as compared to less stable environments. It
is known that under high RE and near-neutral flows that distributions become more Gaussian
(i.e. lighter tails) with increased separation, but the stability impacts for larger scales is not
as well-known. Furthermore, the 3 parameter remains nearly constant for stronger stability,
but changes for the other conditions with increased separation. This indicates that the tails
and skewness of the strongly stable regime remain nearly consistent throughout the range of
separation.

The variations in «v and 3 for the temperature increments are depicted in Figure 6.6. Unlike
in the velocity increment, a at small separations are nearly identical for all stability classes,
suggesting that tails of the distribution are equally heavy. Also, the magnitude of « is less
suggesting even heavier tails for temperature as opposed to velocity increments, which can be
visually seen in two pdf figures. However, as separation increases, the three higher stability
regimes remain heavier tailed while the near-neutral conditions behave smiliar to their velocity
counterpart and become lighter tailed while approaching Gaussian. This result indicates that the
temperature (scalar) field is strongly influenced by the stratification and leads to heavier tailed
distributions with increased separations. Furthermore, as seen with the velocity increments, 3

increases for S1 as separation increases, but the other three regimes remain constant.
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Figure 6.5: Median values of NIG parameters a) o and b) 3 as a function of 7 from the velocity
datasets from Ohya (2001, [201]) based on the four different stability classes: S1, (0 < ¢ < 0.25);
$2, (0.25 < ¢ < 0.50); S3, (0.50 < ¢ < 1.0); and 84, (¢ > 1.0).
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Figure 6.6: Same as Figure 6.5, except for the temperature dataset.

Figures 6.5 and 6.6 showcase the feature of the velocity and temperature increment fields
in a parametric manner. Utilizing this method to evaluate the evolution of the statistical char-
acteristics of the field reveals the variability of the parameters as a function of stability and

separation.
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6.5 Conclusion

U sing a controlled w ind tunnel experin ent w ith di erent stability conditions, h thiswork we
showed that the velocity and team perature ncram ent pdfs digplay som e unigquely di erent fea-
tures.W ith theuse oftheN Iz pdfm odel, we highlighted the speci ¢ changes In the param eters
of the pdf and showed the variation as stability and ssparation ncreased. From these results,
a faw in portant conclusions can be m ade: (1) The vebcity and tem perature incram ent pdfs
are heavy tailed at sm all separation, however, the tem perature distribution is slightly heavier
ndicating larger nterm ittency w ith n the . (ii) Under soongly stable conditions thea and
3 param eter for velocity and tem perature vary less com pared to the other stability regin es, as
the scales of the ow and stability ncreases. (iii) The tam perature ncam ent  eld behaves sin -~
ilarly for m oderately to strongly stable conditions, whereas n the velocity ncram ent  eld, the
strongly stable regin e is ssparated by the other three classes. This indicates that the tem per-
ature structure is strongly in uenced w ith m oderately less stability as opposed to its velocity
counterpart. However, to galn further msight nto the n uences stability has on an all-scale
turbulence w ithin the atm ospheric boundary layver, eld m easuran ents are desired to detect if
sin ilar trends exist. Tn the ollow ng chapters, an exam hation into the behavior of larger scale

(ie., m esoscale) pdfs of velocity and tem perature ncram ents w ill be conducted.
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Chapter 7

Quasi-Universality of Mesoscale

Wind Ramp Distributions

7.1 Introduction

I In this study, we examine the probability density functions (pdfs) of long-term observed wind
speed increments within the mesoscale range (from 10 minutes to 6 hours) of the atmospheric
boundary layer from diverse geographic locations. Throughout the majority of the work thus
far, the discussion has been primarily focused on the small-scale turbulent fields. However, in the
atmosphere a number of large scale motions are present, such as frontal boundaries, low pressure
systems, buoyancy driven flows, meandering motions, and other mesoscale disturbances. The
variability of mesoscale phenomena is not only present throughout the year, but also across
various locations throughout the world creating further reasons to believe differences exist,
such as the tails of the distribution. The knowledge of the tails of the wind speed distribution
(i.e. wind ramps) can be advantageous for predicting extreme wind events, which impacts a
range of industries (e.g., wind energy) which will be the focus for this study.

Wind energy is the fastest growing renewable energy source in the world. The total installed

!The material presented in this chapter is in peer-review as the following publication: DeMarco, A.W. and
Basu, S. (2017) On the Tails of the Wind Ramp Distributions, Wind Energy
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capacity has increased impressively during the last decade, passing from 10 GW in 1998 to 158
GW in 2009.* This is an encouraging development if we consider the issue of managing power
systems with high penetration of wind power. Indeed, the variable nature of wind generation
makes it difficult to reach the basic requirement of balancing the electricity demand by an equal
production. Short-term forecasts of wind power production up to 2 or 3 days ahead can facilitate
the management of power systems by operators. Wind power forecasts are useful for performing
various power system management functions, such as the dynamic quantification of reserves or
the optimization of combined wind-hydro power plant scheduling.1,2 They also prove valuable
when incorporated into bidding strategies for participating in electricity markets.

One of the major challenges facing the wind energy industry is the accurate prediction of
sudden and sharp fluctuations in the wind field (a.k.a. wind ramps) near the lower part of the at-
mospheric boundary layer (ABL; [88, 101, 106, 277]). These not-so-rare and inauspicious events
can drastically modulate deficiencies (ramp down) and/or surpluses (ramp-up) in wind power
production causing disruptions in operations and energy supply balance. More specifically, the
sporadic behavior of wind power generation, due to the variable nature of the wind, makes it
challenging to manage the balance of energy demand. Thus, having the ability to provide a
reliable short-term forecast for these events can greatly facilitate the control and management
of this high-demand power generating systems. Therefore, as the demand for more reliable wind
power increases there is an ever-present need for further advancement in the understanding of
how to properly characterize and quantify the ramp events [129]. It is well-known in the lit-
erature that various meteorological factors can contribute to ramp events including (but not
limited to): thunderstorm outflows, low-level jets, dry lines, cold fronts [91]. Since most of these
phenomena are location-specific (for example, dry lines occur predominantly over the southern
Great Plains of the US), one would naively expect the statistical properties of the ramp events
to also be site-dependent. In this paper, we confront this expectation with reality. By making
use of long-term observational data from several field sites, we demonstrate that a key trait of

wind ramp statistics behaves in a quasi-universal manner.
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Before delving into the detailed quantitative aspects, we provide qualitative support for
our claim via Figure 7.1. Here, we have plotted the probability density functions (pdfs) of wind
speed increments (du) normalized by standard deviation (o5,) displayed in a log-linear fashinon,
from the four locations for all available tower height at 10 min, 60 min and 360 min temporal
separation (7), situated from left to right, respectively. For a specific time increment (7), the
wind speed increments (or ramps) are defined in Eq. 1.1. From wind energy perspective, 7 values
on the order of a few minutes to a few hours (the so-called mesoscale regime) are of utmost im-
portance [47, 129, 255, 280]. They portray strong peakedness near the mode of the distribution,
and more importantly, they all possess tails which are much heavier than a Gaussian pdf. These
tails seem to depend on 7 in a subtle yet systematic manner. Also, the pdfs from all locations
display remarkable similiarities for a specific 7 and the appearance of the distributions change
steadily over the range of separation. This finding is quite remarkable given the differences in
the locations of the datasets and variations in the sample time-periods (i.e., different years for
each site). Furthermore, comparing these pdfs to the small scale data shown in the previous
chapters, it is quite remarkable that the distributions are fairly similiar in appearance, such
that the non-Gaussian behavior is present for smaller 7 value and the distributions become
increasingly more Gaussian with increased separation. However, one striking difference is that
normalized mesoscale wind speed increments possess heavier tails than turbulent increments,
suggesting that time-scales on the order of minutes result in higher probability for rare events.

Additionally, there is also clear similiarities between the various heights overlaid on each
plot which reveals that there are no obvious height-dependences present. Though, this is evident
across all locations, there are varying degrees of intermittency present between the different
locations. For instance, the tails of the distribution for NWTC do not exhibit the same features
as the other locations. Figure 7.1j shows NWTC 10 min wind speed increment pdf which does
not have heavy tails as significant as the other 10 min pdfs. In fact, the data at NWTC suggests
that probability of a extreme event with a normalized wind speed increment ou/os, value of -15

has virtualy a zero percent possibility of occurrence as indicated over the sample 10 years data,
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while at the other locations this extreme event is much more likely to occur. These unexpected
findings inspired us to probe further into this problem by addressing a suite of science questions

in this paper:

Do the pdf tails corresponding to the ramp-up and ramp down events behave differently?

How do the tails depend on the height (above ground level)?

What is the impact of aggregation (filtering) on the tails?

Can the dependence of tail properties on the sample size be quantified?
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Figure 7.1: Probability density functions of wind speed increments for FINO1 (a-c), Hpvsgre
(d-f), Cabauw (g-i), and NWTC (j-1) for the three sets of 7 values from 10 min, 60 min and

360 mins.
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To the best of cur know ledge, none of these questionshave been answered in the literatuire In
a com prehensive m anner. W e do point out that a handfulof studies U8, 49, 155, 185, 215, 219].
provided important buiding blocks for our research. Unfortunately, several of these papers
focused on wind gusts (7 belng on the order of seconds), and thus, thelr ndings cannot be
very relevant for m esoscale wind ram ps. M ore critically, m ost of these studies utilized very
Iim ited am ount of cbservational data (often w ith durations of a few hours to m erely a few
days). C onsequently, In lieu of converged statistics, the results from these works cannot be
faithfully generalized. In this respect, the present study is unigque. It utilizes m ultivyear w nd
datasets from four all-tower sites: FINO 1 (North Sea), H vs re (Denmark), Cabauw (the
N etherlands), and NW TC (U SA ). Sihce these sites are quite diverse n nature, we have m ore

con dence n generalizing the outcom es.

7.2 Description of Observational Data

h order to capture a su cient am cunt of m esoscale phenom ena and have a data sam ple size

that provides robust statstics, it is necessary to obtain datasets that have a large num ber of
sam ples and cover a m ultiyear tin e perdod . Furtherm ore, datasets which com prise of various
geographical and clim atological conditions are also deal to test variability n the data. T here-
fore, we exam ned ourdi erent datasets for cur analysism ade up of hom cgenecus and com plex
terrain. For each location di erent types of research-grade Instrum ents are utilized . N aturally,
w ith such ng-termm data, allof the data sets contain variablk am ount ofm issing data.H ow ever,
the average am ount ofm issing data for the entire collection is less than ~ 4% and In som e cases,
wellbelow 1% . Thus, we believe the availbblk data allow s a robust statistical analysis. The de-
scriptions and results are ordered by the com plexity of the tervain, from uniform , ocean surface
to m cuntainous topography. Tablk 7.1 and Figure 72, along with the follow hg subsections,
provide m ore details into these Jocations. T his data w il be utilized throughout the rem aining

chapters.
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Table 7.1: Description of measurement sites

Site Elevation (m; mean sea level) Location No. of Months
FINO 1 0 54.01° N, 6.59° E 91
Hgvsore 0 58.44° N, 8.15° E 132
Cabauw - 0.7 51.97° N, 4.93° E 170
NWTC 1855 39.91° N, 105.23° W 132

7.21 FINO1

It is an offshore platform in the North Sea [87, 191, 254]. It consists of a 100 m tall meteorological
tower equipped with wind speed measurement sensors (cup anemometers) at heights of 33 m, 40
m, 50 m, 60 m, 70 m, 80 m, 90 m, and 100 m. A total of 91 months of wind speed data collected
over a period of nine years (2004-2012) are utilized in the present study. Each time-series

(output rate: 10 min) contains ~478 thousand samples.

7.2.2 Hogvsere

This meteorological tower is situated in a rural area close to the west coast of Jutland, Denmark
and played pivotal role in numerous wind energy studies [125, 206]. We analyze 10 min-average
wind data from six levels: 10 m, 40 m, 60 m, 80 m, 100 m, and 116 m collected during the years

2005-2015. In this case, each time-series consists of ~567 thousand samples.

7.2.3 Cabauw

The Cabauw Experimental Site for Atmospheric Research (CESAR) tower is located in the
western part of the Netherlands [182, 256, 263]. We use 170 months of 10 min-average wind
speed data from the years 2001-2015 (~736 thousand samples) measured by propeller wind
vanes at heights of 10 m, 20 m, 40 m, 80 m, 140 m, and 200 m. We would like to point out that
even though the landscape at Cabauw is quite flat and open (grassland), the existence of wind

breaks and scattered villages cause significant disturbances in the near-surface region [263].
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7.24 NWTC

We analyze multi-year (2004-2014) wind data from a 80 m tall tower (called M2) located at
the foothills of the Colorado Rocky near Boulder, Colorado and maintained by the National
Renewable Energy Laboratory’s (NREL) National Wind Technology Center (NWTC). This
location represents complex terrain and is prone to various wind flows and disturbances [134].
The NWTC dataset includes 1-min averaged, cup anemometer-based, wind speed time series
from four heights: 10 m, 20 m, 50 m, and 80 m. Each time-series is made up of ~5.78 million
points with virtually no data gaps. In order to compare similar sampling rates, we created a
10 min-average series (sample size: ~578 thousand) by simple moving averaging (followed by

downsampling). This adjusted dataset will be utilized throughout this work.

(a) (b) (c) (d)

Figure 7.2: a) FINO-1 (100 m) 2004-2012, b) Hgvsere (116.5 m) 2005-2015, ¢) Cabauw (200
m) 20012015, d) NWTC (M2; 80 m) 2004-2014

7.3 Methodology

In order to investigate the tail features of the wind ramp events, we have borrowed a well-

established methodology, called the Hill plot [82], from the extreme value (EV) theory [75, 85,
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107], also see Section 3.6 and Chapter 4. In this section, we explain this approach in detail by
using synthetically generated random variates from two heavy-tailed distributions.
By definition, a heavy-tailed distribution (F) satisfies [72]:

F(I)zl—F(m)mﬂ%; x — oo,y >0, (1)

where F is the so-called complementary cumulative distribution function (ccdf). A is a positive

constant and + is known as the tail-index (or shape parameter). In principle, ¥ can be estimated

dlog F(x)

Hoaw [72]. However, in practice, the most common approach is to invoke

from the slope, —
the concept of order statistics [232].

The rank-ordered values (in decreasing order) of z can be written as: ®; = xi, where
k=1,...,N. If the variates z follow Eq. 7.1, it is expected to exhibit the following power-law
behavior (a.k.a. Zipf law; [282]) as shown in Eq. 4.2. Over the years, several estimators for y
have been proposed in the literature, including (but not limited to) Pickand’s estimator [209],
Hill estimator [111], and the Dekkers-Einmahl-de Haan estimator [77]. In this work, we use the
popular Hill estimator (yg), as described in Section 3.6. For EV distributions (e.g., Pareto),
estimated ~y is supposed to stabilize with increasing values of k. In Figure 7.3, we show an
illustrative example utilizing generalized Pareto (GP) distributed variates.

The pdf of the GP distribution can be written as:

i) = G) (1 + di‘;—b))_l_l/c; 25 e (7.2)

where a, b, ¢ are the parameters of GP. By integrating this equation, one can derive the cedf of

Fla) = (1 + @-C:—b)) oy (7.3)

Thus, the cedf of GP is expected to decline as a power-law with tail index v = 1/c.

GP as:

In Figure 7.3 (left panel), the rank-order plots for the GP distribution are shown for three
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Figure 7.3: a) Rank-order (a.k.a. Zipf) plots for generalized Pareto distributed variates with
three different ¢ values. The parameters a and b are assumed to be equal to 1 and 0, respectively.
b) The estimated vy values for these cases. It is clear that vy ~ 1/c for k& > 1000.

values of ¢. For each case, the sample size is 107 and the parameters a and b are assumed to
be equal to 1 and 0, respectively. By construction, only positive random variates are generated
in this case. The tail indices are determined via the Hill plot in the right panel of Figure 7.3.
Clearly, the ~y values rapidly stabilize towards % for all the three cases, as would be desired.
This example attests to the prowess of the Hill plot in estimating the tail indices from a rather
simple EV distribution. Next, we investigate the usefulness of the Hill plot using a far more
complicated distribution with two distinct tail behaviors.

The generalized hyperbolic skew student’s t (GHSST) distribution is often used in financial
modeling and risk management (2, 42]. It has the innate ability to fit pdfs with heavy tails
and significant asymmetry. A brief overview of this distribution is provided in Section 3.2. A
realization of the GHSST variates is shown in the top-panel of Figure 7.4. Large positive values,

signifying a heavy right tail, can be readily observed in this plot.
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Figure 7.4: A realization of the GHSST variates (sample size = 107) is generated using the
following parameters: v = 6, 8 = 0.5, o = —0.125, and § = 1. A subset of these variates is
shown in (a) as an illustrative example. The mean of the variates is depicted by the dashed
red line. The green lines denote three times the standard deviation around the mean. The
analytical (black line; [2]) and sample (magenta circles) pdfs are shown in (b). For comparison,
a Gaussian pdf (dot-dashed line) with zero mean and unit variance is overlaid on this panel.
The tails of the GHSST and Gaussian pdfs are shown (c). Since the right and the left tails of
the GHSST pdf behave differently, they are shown separately. Clearly, the right tail exhibits
a linear behavior in this log-log representation. Rank-order (a.k.a. Zipf) plots for the GHSST
and Gaussian distributed variates are shown in (d). Estimated tail indices (yy) utilizing the
Hill plot are documented in (e).
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The pdf of the generated GHSST variates is shown in the middle-left panel of Figure 7.4.
For comparison, a Gaussian pdf is overlaid on this plot. Clearly, both the left and right tails
of the GHSST variates are much heavier than the Gaussian pdf. They also show different
decaying behaviors as evident in the middle-right panel. For large values of z, the right tail
portrays a quasi-linear appearance in this log-log representation. In other words, the right
tail is characterized by a power-law distribution which is in-line with the asymptotic limit
discussed in Section 3.2. In contrast, the left tail strongly departs from linearity highlighting its
mixed-exponential-power-law behavior. The rank-order plot, shown in the bottom-left panel of
Figure 7.4, provides further supporting evidence.

At this point, we would like to point out that Eq. 7.1 has limited applicability in real-world

scenarios. For such cases, this equation should be generalized as:

F(z)=1-F(x) ~ : z — 00,7 >0, (7.4)

where, L is a slowly varying function (e.g., exponential). For large z, L(x) may be approximated
as a constant .

The tail indices from the GHSST variates are estimated via the Hill plot and shown in the
bottom-right panel of Figure 7.4. These results should be interpreted carefully by taking into
consideration Eq. 7.4. In the case of right tail, the 4 values stabilize rapidly as in the case
of GP distributed variates. For the left tail, the vy values are significantly higher; also, the
stabilization is slightly slower (difficult to detect in this figure without zooming in). In this
case, the exponential term modulates the power-law tail. Please note that the estimated ~y
values are very high for the random Gaussian variates and they never stabilize as the tails
simply follow exponential behavior. In Figure 7.5, we document the influence of sample size on
vu estimation using the GHSST variates. In the case of the right tail (exhibiting power-law
behavior), 7y values are more-or-less insensitive to sample size (N). In contrast, for the left

tail, vy keeps increasing as N increases. This non-convergence essentially corroborates the fact
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that the left tail of the GHSST pdf does not exhibit a purely power-law behavior; rather, it

follows a mixed—exponemtia,l—p(:nwer—la,w.2
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Figure 7.5: Sensitivity of estimated ~y values with respect to sample size. All the GHSST
variates are generated using the same parameters as in Figure 7.5. (a) and (b) correspond to
the left and right tails, respectively.

In summary, with the aid of randomly generated variates, we have demonstrated that the
Hill plots can be very effective in characterizing different types of tail behaviors. It is also
computationally very efficient. For these reasons, in the following section, we will invoke this
methodology to address the science questions posed in the Introduction. The idealized exam-
ples shown in Figures 7.3, 7.4, and 7.5 will provide guidance for interpreting the wind ramp

characteristics observed within various observational datasets.

7.4 Evaluation of the Tail-Index

Given that the NWTC dataset offers the largest sample size, we select it first for comprehensive
analysis. The original granularity of the wind time-series is 1-min. Henceforth, we refer to this

series as NWTCq i, In order to study the effects of aggregation on the tail characteristics,

2In a recent paper [79], we reported a similar trend for the normal inverse Gaussian (NIG) distribution, which
also possesses mixed-exponential-power-law tails.
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we created a 10-min-average series (sample size: ~578 thousand) by simple moving averaging
(followed by downsampling) of the NWTC{,;, series. This new series will be identified as

NWTCIOmin'

The cedf (F) for both the NWTCq, 5, and NWTCq iy, time-series are shown in Figure 7.6.
The left and right panels represent 7 = 10 min, and 7 = 60 min, respectively. On these plots,
F for a Gaussian distribution is also shown for comparison. In this log-log representation, we
only focus on the right tail (ramp-up) of the pdf. Several remarks can be made from this figure.
First of all, both the NWTCq,;;, and NWTCy,;,, cases clearly portray non-Gaussian tails.
The implication of this heavy-tail behavior is rather crucial for the wind energy community.
For example, the exceedance probability of a strong ramp-up event of magnitude 5o, is very
small (much less than 107°) if one assumes Gaussianity. According to observations, however,
the exceedance probability is almost 1072, In other words, the assumption of Gaussianity leads

to severe underestimation of extreme wind ramp events.

10° 4 10° :
NWTC (z=80m) | NWTC (z = 80 m)
! r=10min | 7=60min |
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Figure 7.6: Complementary cumulative distribution function (F) from the NWTCypiyy and
NWTC{ i datasets at z = 80 m are shown. (a) and (b) represent time increments (7) of 10
min and 60 min, respectively. The wind increment values are normalized by the corresponding
standard deviations (og,). A Gaussian pdf is overlaid (dashed line) as a reference.
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Figure 7.7: The Hill plots for wind ramp distributions based on the NWTCy;;, time-series.
The red (solid) and blue (dashed) lines represent ramp-up (du*) and ramp-down (du™) cases,
respectively. (a) - (d) correspond to the following scenarios, respectively: (i) 7= 10 min, z = 80
m; (ii) 7= 60 min, z = 80 m; (iii) 7= 180 min, z = 80 m; and (iv) 7= 180 min, z = 10 m.

In Figure 7.1, we reported that the tails of the wind ramp pdfs systematically depend on
7. Thus, it is not surprising that the same dependence is also evident from the ccdfs. From
Figure 7.6, one can discern that, in comparison with 7 = 10 min, the right tail decays faster in
the case of 7 = 60 min. Later on, we will establish that this trend is actually monotonic in the
range of 7 = 10 — 360 min.

According to Figure 7.6, the agreement between NWTCqyi,,- and NWTCq i -based F
curves are excellent up to du = 505, . Beyond that point, the NWTC1;,,-based F curve starts
to decline faster. With the aid of the Hill plots, we will further investigate if this discrepancy

is due to the disparity in sample sizes or it is an artifact of aggregation.
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The Hill plots for NWTCq i, are shown in Figure 7.7. The values of vy are found to be
noticeably higher for larger 7 values. In other words, the wind ramp pdf tails decay faster for
larger 7 values, which is in-line with our earlier finding. Both the ramp-up (noted as du™ ) and
ramp-down (du~) cases follow similar trends. However, the vy curves never fully stabilize for
either case in the considered range (1 < & < 3000). Thus, we can deduce that the wind ramp
pdf tails do not obey power-laws. Later on, we will explore further if these NWTC data-based
results also hold for other datasets.

In order to quantify the effect of sample size on the vy values, we adopted a Monte-Carlo-
type strategy. From the NWTCq,;, time-series (sample size 5.78 million), we extract one
hundred contiguous subsets from random locations. Each subset is called NVVTCéub and con-
tains 578 thousand samples. The index ¢ varies from 1 to 100 to demarcate each subset. We then
perform Hill plot analysis on each subset separately and compute ensemble statistics. These
ensemble Hill plots are shown in Figure 7.8. The ramp-up and ramp-down cases are shown
separately in the left and right panels, respectively.

The overall trends of the vy values reported in Figure 7.7 and Figure 7.8 are qualitatively
very similar. However, the magnitudes of vy for the NVVTC;ub cases are significantly lower
than the NWTCy,;,, series. We would like to remind the readers that similar sample size
dependency were reported earlier in the case of the left tail (depicting a mixed-exponential-
power-law behavior) of the GHSST pdf (refer to bottom-left panel of Figure 7.5). Thus, on the
basis of the Hill plot analyses and cedf plots, we can confidently claim that the wind ramp

distributions do not exhibit power-law tails.
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Figure 7.8: The Hill plots for wind ramp distributions based on the subsets of 1-min-average
NWTC wind speed time-series. Each subset contains contiguous 578 thousand samples. A total
of one hundred randomly selected subsets are utilized for these plots. The top, middle, and
bottom panels represent 7 = 10 min, 60 min, and 180 min, respectively. Ramp-up and ramp-
down results are shown in left and right panels, respectively. The solid lines, dark shaded areas,
and the light shaded areas correspond to the medians, 25th-75th percentile ranges, and 10th-
90th percentile ranges, respectively.
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In order to further bolster our claim, we have computed ~y for three other locations: FINO
1, Hgvsgre, and Cabauw. Wind data from the topmost sensor levels are utilized. Figures 7.9 —
7.11 show the Hill plots for three different values of 7, 10 min, 60 min and 180 min, respectively.
In each of these figures, we also included the Hill plot for the NWTCq (i, series. Based on
these figures, several assertions can be made. First of all, the Hill plots from all the locations
look remarkably similar. For (almost) all the cases, the differences between the ramp-up and
ramp-down events are marginal. At the same time, for all plots, the values of vy do not stabilize
and continue to decrease with increasing k. Thus, we can safely rule out power-law being a viable
candidate for wind ramp distributions. In-line with our earlier finding, the +; values exhibit
dependence on 7. Thus, stable distributions [232] should not be used to characterize wind ramp
distributions.

Earlier, we have concluded that the 4y values strongly depend on sample size. Now, in
order to probe the impact of aggregation, we compare the vy values for the NWTCqin
series (bottom right panels of Figures 7.9 — 7.11) against the corresponding values from the
NWTCsiub series (reported in Figure 7.8). Please note that these series have identical sample
size; albeit, they have different granularity. From the plots, it is quite evident that the ~y
values from the NWTCq (i, and NVVTCéub series are very much comparable. Thus, within
the limited filtering range of 1-min to 10-min, the aggregation effect is negligible. However, one
should not downplay the effects of sample size.

Thus far, we have only focused on wind data from the topmost sensors of all the four
meteorological towers. It would be interesting to find out if/how the vy values depend on sensor
height. Instead of plotting several individual Hill plots, we opt for plotting averaged 4y values so
as to report all the results succinctly in Figures 7.12 and 7.13. The values of (yy ) are computed
for 2000 < k < 3000. We intentionally (and incorrectly) assume that over this range the values
of vy have fully stabilized. Despite this ad-hoc assumption, the results are quite revealing. For
both the ramp-up and ramp-down cases, (74 ) increase monotonically from ~ 4 (at 7 = 10 min)

to ~ 6 —7 (at 7 = 360 min). The diversity in {7y ) values across various heights is rather small
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(especially for 7 < 180 min). Among all the locations, the spread of (ym) is the most significant
at Cabauw; the (yg) curves from the top two sensors, located at heights of 140 m and 200
m, seem to branch out from others for 7 > 180 min. We speculate that certain meteorological
processes (e.g., low-level jets) influence the wind ramp statistics at higher altitudes. However,
we need more observational datasets from higher altitudes (possibly collected by lidars and /or
sodars) to shed further lights on this intriguing finding. To evaluate the quasi-universal behavior
between these datasets, we will examine the probability of exceedance over a range of standard

deviations and two temporal scales.
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Figure 7.9: The Hill plots of wind ramp distributions from four field sites: FINO1 ((a); sensor
height: 100 m), Hovsare ((b); sensor height: 116 m), Cabauw ((c); sensor height: 200 m), NWTC
((d); sensor height: 80 m). For all the cases, 10-min-averaged wind speed are utilized. The time
increment () is 10 min. The ramp-up (du™) and ramp-down (du~) statistics are denoted by
red (solid) and blue (dashed) lines, respectively.
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ramp-up data from all the available sensors from all the four sites are utilized here.
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Figure 7.13: Same as Figure 7.12, except for ramp-down events.

7.5 Probability of Exceedance

Tables 7.2 and 7.3 showcase the probability of exceedance (%) for the right side of the dis-

tribution for a range of standard deviations from 3o , (near the core) up to 10¢ , (near the

tails) for the 10 min and 60 min increment data, respectively. To compute these values, the

approach along with the code is shown in Section A.6. Since the increments are normalized by



their standard deviation, the coefficient corresponds to the du/o ,, value on Figure 7.1. Of note,
for this analysis, the pdfs are converted to edf to avoid the use of histogram binning of the pdf,
which has previously been shown to be sensitive to bin width selection.

From these tables the following conclusions can be made: (i) As o ,, increases the probability
of exceeding a particular value decreases, which is clearly depicted from the monotonically
decreasing probability with increasing du, shown in Figure 7.1. (ii) The exceedance values for
each site regardless of the tower levels are nearly identical. Further proving that the pdfs of
wind speeds increments in the mesoscale range are not dependent on height. iii) The differences
between the locations for a given ¢ , value are minimal, but do indicate differences which are
similiar to the visual inspection from the pdf plots. For instance, the NWTC reveals a lower
probability of exceedance of the 100 , values (i.e. extreme events), however the other sites are
not far behind.

With regard to the 60 min exceedance probability (Table 7.3), the similiarities between the
values are more consistent indicating that from a 60 min increment perspective the data behaves
in a quasi-universal manner, more so than at 10 min. Another interesting observation can be
made from this table. For instance, the FINO-1 tower shows viritually identical exceedance
values for the middle 4 to 5 tower levels. This suggests that over the ocean a very uniformed
boundary layer is formed resulting in a consistent wind speed increment at a separation of 60
mins. In other words, this result indicates that the intensity of turbulence does not change
much over a given time period, as ocean surfaces do not experience large diurnal cycles [246].
The influence on diurnal variability on the wind speed increments will be addressed in more
details in the following chapter. Furthermore, for all locations the probability to exceed 10e .,
is lower than with the smaller 7 increment, which indicates a reduction in the tails features
as 7 increases. This type of analysis provides a quantative metric into the similiarities and
differences between the datasets and can shed light into potential physical explanatiions as to

the features causing these contrasting features.
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Table 7.2: Exceedance Probability (%) for right tail (= = 10 min)

site | z (m) | F >305, F >b06, F >7Tos, F >100s,
33 | 9.58e-1 2.26e-1 6.76e-2  1.10e-2
40 | 957e-1 2.24e-1  7.05e-2  1.08e-2
| 50 | 9.57el 237e1 7.36e2  1.37e-2
S | 60 | 9.82e1 23%-1 7.33e2  1.37e-2
Z 70 9.67e-1  2.38¢-1  7.13e-2  1.15e-2
= | 80 | 9.56e-1 2.32-1 6.85e-2  1.33e-2
90 | 9.67e-1  2.34e-1  T7.12e2  1.14e-2
100 9.16e-1 2.01e-1 5.65e-2 1.03e-2
10 | 8.09-1 1.25e-1 2.85¢-2  5.00e-3
@ 20 | 8331 1.40el 3222  5.55e-3
S| 40 | 854el  146e-l  3.20e-2  6.10e-3
2 | 8 | 862-1 1.54e-1 3.33e-2  5.18¢-3
T | 140 | 856e-1 1.57e-1  3.53¢-2  5.73¢-3
200 | 8.36e-1 1.52%-1 3.53¢-2  5.58e-3
10 7.55e-1 1.34e-1 4.12e-2 1.13e-2
.| 20 | 7731  136el 43le2 1272
S| 40 | 78lel  147el  5.06e-2  1.63e-2
5 80 7.83e-1  1.55e-1  5.16e-2  1.61e-2
O | 140 | 7.72e-1 147e1 4582  1.55e-2
200 | 7.67e-1  1.38e-1  4.52e-2  1.4le-2
5 10 1.01e0 1.56e-1 2.71e-2 3.11e-3
5| 20 1.04¢0  1.62e-1 2.87e-2  3.11e-3
E 50 | 1.06e0  1.70e-1  3.30e-2  4.15e-3
80 1.07¢0  1.7le-1  3.37e-2  4.49¢-3

7.6 Conclusions

In this study, we analyzed several long-term wind speed datasets comprised of four different
geographical locations, from offshore to complex terrain. We showed that the wind ramp pdfs
from all the sites reveal amazingly similar shape characteristics. Most interestingly, the tails
of the wind ramp pdfs are much heavier than Gaussian and decay faster as time increments
increase. With the aid of the Hill plots, we showed that the extreme ramp-up and ramp-
down events behave similarly from a statistical point-of-view. Moreover, the tail-index statistics
exhibited minimal dependence with respect to height above the ground.

Another important aspect of these results showed that the tails of the wind ramp distribu-

106



Table 7.3: Exceedance Probability (%) for right tail (7 = 60 min)

site | z (m) | F >30sy F >b0s5, F >7os5, F >1004,
33 | 843e-1 1.15e1 2.04e2  1.18¢3
40 | 8.43e-1  1.13e-1  2.07e-2  6.92-4
_ | 50 | 836e-1 1.15e-1  2.08e2  4.57e-4
S | 60 | 837e1 1.16e-1 20602  4d.42e-4
Z 70 8.4%-1 1.14e-1  2.05e-2  4.42e-4
= | 80 | 804e-1 1.16e-1 2.10e2  4.4%-4
90 | 8.03e-1 1.18¢-1 2.06e-2  4.38e-4
100 | 7.57e-1  1.08e-1  2.44e-2  1.32¢-3
10 | 7.38¢-1 88le2 1.47e2  1.67e3
P 40 7.42e-1 8.92e-2 1.54e-2 1.85e-3
S| 60 | 7.631 9.03e2 1392 1.67e3
g 80 | 7.65e-1 9.34e-2  1.36e-2  1.30e-3
T | 100 | 7.46e-1 9.00e-2 1.4le-2  1.48¢-3
116 | 7.12e-1 8.40e-2 1.47e-2  1.49¢-3
10 | 6331 7.12e2 1282  6.88¢4
. | 20 | 6591 T5le2 1ldle2  8.22-4
5| 40 | 6.85e-1 829e-2 15le2  1.09-3
S| 80 | 6721 8022 1532 82led
© | 140 | 6.38¢-1 7.58e-2  1.43e-2  5.48e-4
200 | 6.20e-1 7.56e-2  1.34e-2  1.78e-3
o | 10 | L020 123l 1692 519
= 20 1.02e0 1.20e-1 1.64e-2 5.19e-4
; 50 1.00e0  1.08¢-1 1.40e-2  3.46e-4
80 | 9.9le-1  1.04e-1 1.21e-2  5.19e-4

tions do not follow a power-law distribution, rather modulated by a slowly varying function.
We speculate this function to be an exponential. As shown in earlier chapters, several types of
pdfs from the generalized hyperbolic distribution family (e.g., GHSST, NIG) can be considered
as ideal candidates for capturing the tail characteristics of wind ramp distributions. We also
highlighted the pros and cons associated with the different models, which should be taken into
account when representing these quasi-universal distributions.

As the wind energy industry continues to flourish and wind ramp prediction becomes in-
creasingly important, the results from this study should be utilized for model validations and

improvement. It would be critical to find out if the state-of-the-art numerical weather predic-
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tion models and time-series forecasting tools are able to capture the extreme ramp behaviors
accurately. It is also envisaged that the contemporary synthetic wind speed generators (e.g.,

[74, 189]), heavily relying on statistical information, will tremendously benefit from our findings.
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Chapter 8

The Probability Density Functions
of Wind Speed Increments in the

Mesoscale Range

8.1 Introduction

Extending the work from the previous chapter, the focus will now shift to determining a pdf
model which is capable of capturing the features depicted in Chapter 7 over a range of sepa-
ration. As discussed in detail in Section 2.3, only a few studies have addressed the statistical
characteristics of wind speed within the mesoscale range. In these studies, generally speaking,
the pdfs of wind speed increments are shown to portray similar feature and fit typical sinall-scale
model, vet a general consensus into which model provides the most reliable fit is still lacking
and there has not been a quantitative examination.

An additional factor that has not been addressed is the variability on the mesoscale wind
increments pdfs between day and night conditions. The Earth’s atmosphere undergoes drastic
changes within the boundary layer between the day and night cycle. For instance, buoyancy and

shear generation contributes differently to the total turbulent kinetic energy (TKE) production
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depending the time of day. Recently, Kiliyanpilakkil and Basu (2015, [136]) studied the impacts
night and day environments have on mesoscale wind scaling characteristics and found a larger
exponent ((2) for second order structure function during night time over land as compared to a
more convective, day time regime. This finding suggests more intermittency occurs within the
night time boundary layer with respect to height. Also, they revealed that over the ocean there
is a negligible difference in (2 ensued between day and night. Therefore, a closer examination
into the impacts these atmospheric condition has on the pdf features will be conducted.

A main objective for this work is to determine if a particulr model is able to capture the
behavior of the mesoscale wind speed increments, similiar to the small-scale counterparts. We
estimate the parameters of these models using the maximum likelihood estimation technique,
as previously shown, and examine the quality of the fit using two goodness of fit (GoF') metrics,
Kolmogorov-Smirnov (K-S) and the two-sided Anderson-Darling (A-D) tests for our evaluation.
We will discuss the pros and cons of each model and with the use of the model parameters, we

will address the impacts day and night have on pdf characteristics.

8.2 Mesoscale Probability Density Functions with Model Fit

The observed wind speed increment pdfs from the four locations and tower heights (FINO1
(100m), Hevsgre (100m), Cabauw (80m) and NWTC (80m)) are presented in Figures 8.1 and 8.2
for 10-min and 360-min temporal separation (7), respectively. Overlaid on each figure are the
four different pdf models discussed in Chapter 3. The parameters of these individual models
were estimated using the MLE-based approached. However, for the LNSS model the method
of moments approach is utilized, see Eq. 3.11. Due to extreme computational expense for the
MLE calculation for LNSS, we are limited to showcasing the results in this manner. Thus,
our intentions are to highlight the limitations with the proposed LNSS model and estimation
method. In Figure 8.1¢ the inset shows the linear-linear representation of the 10 min wind speed
increment pdf for the 80 m height at Cabauw. This plot is highlighting the over estimation of

LNSS-MME near the peak of the distribution, which is not as evident in the parent plot. Thus,
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we caution that portraying pdf results via log-linear can mask some of the important features
near the peak of the distribution. Similarly, depicting results in a linear-linear fashion can hide
the behavior of the tails, as mentioned in Chapter 2. Therefore, the use of GoF testing leads
to a more robust examination into the quality of a given model’s fit, a similar discussion was
made in Section 5.5.

The pdf shapes in Fig 8.1 clearly display features that are synonymous with the small-
scale counterpart, in which the tails extended outward towards the larger extreme values and
the peaks are narrower than Gaussian. Though, this is evident across all locations, there are
varying degrees of intermittency present depending on the location. For instance, the tails of the
distribution for NWTC do not exhibit the same features as the other locations. This artifact is
likely due to the variations in the geography/topography, as NWTC is located at the foothills of
the Colorado Rockies. With regard to the models fit, all models visually provide a very reliable
fit up to about 102 probability, however near the tails there are clear difference between all
models and locations. From a qualitative perspective, GHSST and LNSS models provide the
best fit near the tails for FINO-1, Hgvsere and Cabauw, while at NWTC, NIG and LNSS appear
to capture the shape most accurately.

As the separation increases, Figure 8.2 provides evidence that the shapes of the pdfs tend
towards a Gaussian shape, similiar to the observed trends in small-scale turbulence. However,
at NWTC there is still a quasi-heavy tail feature, which suggests a higher likelihood of stronger
wind gusts as opposed to the other locations at 6 hr increments. Also, at NWTC there appears
to be a moderate peakedness, relative to the Gaussian distribution, near the mode, which is
a signature of increased intermittency still contributing to the flow characteristics at 6 hour
time scales. Overall, the pdf models’ fits at 7=360 min are all generally in line except for
the marginal over-estimation of GHSST across the board. While VG distribution appears be
the most consistent fit for all locations at this separation. These results signify three points:
(i) The wind speed increments within the mesoscale range behave similar to the small-scale

turbulent regime, as remarked by Muzy et al. (2010, [185]); (ii) Though, features appear to
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Figure 8.1: 10-min wind speed increment pdf for the following locations and tower heights
in order of complexity from smooth ocean surface to complex terrain. a) FINO1-100 m; b)
Hgvsere-100 m; ¢) Cabauw-80 m; d) NWTC-80 m. Overlaid on each figure are the estimation

model pdfs using MLE for NIG, VG, and GHSST and MME for LNSS. The dashed black line
represents the Gaussian distribution.

be quasi-universal, differences in the shapes are present across diverse geographical locations,
as discussed in Chapter 7; (iii) Each of the pdf models is capable of revealing the unique
features of the underlying data, yet further quantitative evaluation is need to determine the

appropriateness of a given model of choice.
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Figure 8.2: Same as Figure 8.1 except for the 360-min wind speed increment pdf.

8.3 QuantileQuantile P Iots

Given the accuracy of NIG and GHSST throughout this work, we will now utilize a Quantile-
Quantile (Q-Q) plot representation to show an alternative quality of the fit. Q-Q plots are
commonly used in statistics to compare and determine if two distributions are the same. In
a non-parametric way, we are comparing the observed wind speed increments across various
temporal separations (10, 60, and 360 min) against the corresponding estimated pdf models
(NIG in Figure 8.4 and GHSST in Figure 8.5). The predicted NIG values are constructed by
an inverse cdf function, as shown in Appendix A.1. A similiar computation is done for GHSST

(not shown). If the sample and theoretical distributions are identical then the data points will

113



fall on the dashed red line.

In Figure 8.4, it is clear to see that NIG, using the MLE technique, can estimate well the
normalized wind speed increment sample for all locations and increments up to ~ £5. In other
words, this confirms the accuracy of the up to 5o ,,. Moreover, as the separation increases, the
model fits are significantly improved and more or less fall in line with the observations. However,
as indicated in the pdf plots, the fit of the model is problematic such that NIG underestimates
the tails of the distribution for small 7 values, especially for the three North Sea locations
(top three rows). But for NWTC, the NIG fit is virtually perfect and can be confidently used
for estimating the mesoscale wind speed increment data for this complex terrain environment.
From a quantative perspective, it is clear to see, from the legends, that the K-S and A-D results
in-line up with the visual comparisons. However, since A-D puts more emphasis on the tails, the
deviation between locations is more amplified due to the test statistic being more sensitivity to
the accuracy of the prediction of the extreme and rare events.

In a similar manner, Figure 8.5 shows the comparison of the observed wind speed incre-
ments against the GHSST model. Interestingly, despite the visual accuracy of GHSST, the Q-Q
representation reveals a not-so-accurate result. Unlikely NIG, GHSST equally overestimates,
from each side of the distribution, the observed data beyond £5. This remains fairly consistent
throughout the sites and for the various 7 values. However, with NWTC the GHSST model is
a very poor estimator, likely due to the steeper tail characteristics evident from the pdf plots.
Again, this “3-D” like turbulent feature is an artifact of the complex terrain and is therefore a
factor that needs to be considered in terms of providing a suitable pdf model for predicting the
wind ramp conditions. Given the fact, that these two model lead to relatively poor estimation
near the tails of the distribution, we will now evaluate the GoF of these models utilizing the

K-S and two-tailed A-D test statistics.
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Figure 8.3: K-S (D) box plots for the wind speed time series increments from a) FINO-1, b)
Hgvsore, ¢) Cabauw, and d) NWTC towers.

8.4 Goodness of Fit Evaluation

Figure 8.3 shows the K-S edf statistic (D) comparing NIG, GHSST, and VG against the wind
speed increment for the particular sites, where the lower the value represents the better fit.
Each box plot contains the D values for a range of separations from 10 to 360 mins. From this
perspective, the results are further indicating that VG is a model that is unable to represent
the mesoscale wind speed increments well enough to be considered. This result is in agreement
with the visual inspection of the pdfs in Figure 8.1 as VG is shown to drastically under estimate

the observed data for small increments, leading to a poor statistical test. However, NIG and
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GHSST reveal more adequate fit to the data with D values remaining below 0.01, with GHSST
minimally providing a more accurate fit. Also, the differences between the fit as a function
of height is minimal within each location, suggesting the there is no height dependence. The
clear outlier is the NWTC location in Figure 8.3d, in this instance NIG well outperforms the
other two models. Again, this location represents the complex terrain and distributions do not
portray similar heavy-tailed features from the other near-homogeneous terrain location. This
finding provides an indication that the mesoscale range behavior is quasi-universal and perhaps
two models pdfs can be capable of approximating the variations of all ABL flows.

As previous shown in Chapter 5, the Anderson-Daring (A-D) test statistics provides a usefuly
metric for determining the GoF giving more weight to the tails of the distribution. As we have
presented the tail behavior is a unique feature for the mesoscale range wind speed increments
(see Section 5.5 for detail). A-D statistic can also reveal the difference between the right and
left tails of the distribution separately. Equation 8.1 shows the modified statistics based on the
right and left tail, respectively [160] and the results from mesoscale wind speed increments are

displayed in Table 8.1,

_ [*® {F(x) - Feup(a)}?
Al = n/;m T F() dF(z), (8.1a)
A2 =n /_O:O i _FIE;""P("")} dF(z), (8.1b)

where Fgasp(z) is the empirical distribution function, F(z) is the estimated distribution func-
tion of the model, and n is the sample size of the evaluated points of the corresponding dis-
tributions. These results show the 5%, 95%, and median values from all levels for the given
observational tower and respective 7 values. Generally, speaking the GHSST model outper-
forms NIG for the first three sites, however NIG is much more accurate model compared to
GHSST for NWTC, due to its lighter tails. Also, as separation increases, the NIG model, for

the left and right tails, indicates an improvement in the estimation for first three sites, but
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the opposite is true for NWTC. However, GHSST gets worse as separation increases for all
sites. Another key finding is that the spread of values are largest at Cabauw providing evidence
that the pdfs of wind speed increments vary with height as well as the NIG prediction. Finally,
for the locations which portary heavier tail features (North Sea sites), the general conclusion
suggests that the model estimation is less accurate for the right tail behavior compared to the
left, for small 7.

These statistically evaluations not only reveal a quantative metric for the accuracy of the
model fits, but can also divulge information regarding specific differences in particular pdf
feature (i.e., skewed, heavy tailedness). Thus, using the NIG model and the steepness parameter
(a), we will examine the variations in the tail features as a function of 7 for day and night time

period, which possess distinctly different atmospheric boundary characteristics.

8.5 Day and Night Impacts on Wind Speed Increments

The diurnal variations are one of the key signatures within the ABL. As incoming solar radiation
warms up the earth’s land surface changes in the near surface characteristics occur leading to
turbulence transport processes modifying the structure of the ABL [246]. While, during the
night hours, the surface begins to cool due to long wave radiative cooling creating a more stable
ABL which restrict turbulence due to buoyvancy. From a wind speed increment perspective,
few have studied the differences between day and night characteristics. As an example, it was
shown in Vindel et al. (2008, [266]) that for a wide range of atmospheric stability throughout the
diurnal cycle, the flatness (see Eq. 2.5) changes considerably due to intermittency variations.
For instance, for their study they evaluated atmospheric boundary layer wind increments for
a single field campaign and found that during night time hours the degree of intermittency
was reduced, resulting in a near-Gaussian distribution form during the night and a more non-
Gaussian feature during the day. Unfortunately, this analysis was only conducted during a
very short time period and examined only for small scale (sub-minute) increments. Therefore,

using the long-term time series data, we will investigate the variations in the pdf characteristic
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Table 8.1: A%and AQR statistics for the mesoscale wind speed increments the four sites at 7 =
10 min, 60 min, and 360 min. The results are the median, 5%, and 95% height values for the
NIG and GHSST models. See Eq. 8.1.

PDF Model
NIG GHSST
70} o}
= E E| % 0% 9% 5%  50%  95%
=~
- L| 422 5.50 5.74 1.57 3.35 3.83
i R| 6.44 6.83 7.63 3.05 5.25 5.99
© 4 L[ 672 7.82 19.93 0.73 4.46 5.46
Z R| 202 2.93 7.64 3.10 7.78 9.90
= — 3.57 4.87 6.27 0.96 1.31 2.29
R| 1.04 1.54 2.95 5.07 6.22 8.66
0 L | 6739 86.04  124.19 7.58 17.54  23.19
o R | 88.13 107.93 17858 | 2147  35.61 44.70
% &5 L 75.80  183.97 217.21 | 13.89 15.20 17.07
£ R | 89.75  99.40 14044 | 36.02 4453  57.21
= 360 _L | 37.96 51.06  70.96 19.21 54.64  61.30
R | 17.79  32.02  49.36 | 133.73 181.57 190.37
15 200.06 2167.52 7744.77 | 21.83 9236  113.89
3 R | 2023.15 3511.50 8824.67 | 1094  45.71 57.23
= o L | 9292 621.04 849.50 | 24.15  32.25 39.66
= R | 156.30 706.29 833.47 | 1218  21.92  61.05
@ 360 L[ 1120 62.67 180.56 | 27.60 116.27 405.58
R | 43.74 168.87 268.83 | 4227  78.08  241.78
0 L | 3687 69.10  81.88 | 534.22 697.23  750.15
O R| 7.68 9.85 12.13 | 897.94 1215.57 1510.12
B e L | 76.63 119.70 136.73 | 1393.07 1442.79 1634.45
= R | 93.86 130.72 180.15 | 2142.66 2444.92 2587.43
7 460 L | 403.69 500.09 647.96 | 1877.15 2342.44 2874.33
R | 417.24 503.04 657.06 | 2398.66 2835.15 3445.95

between day and night time measurement.
Now that the model evaluation has been conducting and the NIG-based estimation has
shown to provide an acceptable representation of the mesoscale wind speed increments, we

will utilize the & parameter as an illustrative example'. Before we break down the day-night

IGHSST also provides a quality estimation of the mesoscale wind pdfs, however, since the moments of NIG
are all finite, this model is the most desirable to use.
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series, Figure 8.6 shows « (estimated from the normalized wind speed increment) as a function
of 7 for the four locations. Overall the location there doesn’t appear to be much of a height
dependence, except for at larger scales (i.e., 7 > 120 mins) at Cabauw. Also, the a values
are monotonically increase as a function of 7, which suggests that all the distributions are
tending towards Gaussian as separation increases. This can also be seen with pdf plots shown in
Figures 8.1 and 8.2. To investigate the impacts night and day has on the wind speed increments,
the data is separated by two, six hour periods, 11 to 17 local time for day and 23 to 05 local
time for night.

Figure 8.7 shows a as a function of 7 for the four tower locations. The left and right columns
depict the day and night time results, respectively. From this perspective, there are clear and
interesting similiarities and differences between o during day and night time conditions. From
an initial observation, a increasing with respect to increasing 7 for both day and night time.
This indicates a change in the steepness (or heaviness of the tail) of the pdfs from semi-heavy tail
at small increments to near-Gaussain as 7 approaches 360 min in both conditions. However,
comparing day and night at small scales, there is a minor indication that the tails of the
distribution are slightly heavier during night time conditions as opposed to day time. This
suggests that at 10 min increments, the night time ABL exhibits slight more intermittent
features. Furthermore, comparing FINO-1 day versus night there is not a marked difference
between the behavior of the pdfs. This interesting finding can also be supported by the fact
that over the ocean, where the ABL does not possess a strong diurnal cycle, one would not
expect to see significant difference in the turbulent features even within the mesoscale.

In terms of the height dependence, there are strikingly different features that exist between
day and night. For instance, at all locations there does not appear to be significant different
in a with respect to height. However, for the night time condtions, especially over land, the
steepness of the distribution clearly is changing with height. For example, Cabauw shows that
« increases more rapid within increase height as separation increases suggesting that the tails

of the distribution remain heavier tailed (more intermittency) beyond 60 min at lower heights
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above the ground. Similiar results ensue over NWTC, though not as drastic. For Hevsgre the
changes in the o occur at larger scales, though it is still a marine environment and would be
less influenced by diurnal fluctuations. Using NIG and the steepness parameter a provided a
useful method to diagnosis the features of the wind speed increment pdf during the day and

night conditions.

8.6 Conclusion

In this work, we analyzed the wind speed increments from long term time series wind measure-
ment over diverse geographical locations. A quasi-universal multiscaling behavior was shown
for these distributions over a range of separation from 10 min to 6 hr. Utilizing the MLE tech-
nique, we illustrated the ability of a number of pdf models to capture the inherent features of
the empirical pdfs. Though these models visually revealed a degree of percision in the fits, two
goodness of fit metrics were explored to determine the model with the best fit. The reliability
of both the NIG and GHSST distributions were demonstrated through the visual inspection
of Q-Q plots along with K-S and two-tailed A-D test statistics. From these statistics it was
shown that NIG is more accurate over complex terrain while GHSST can capture the wind
speed increment characteristics over homogeneous terrain. Using the NIG-based estimation,
specifically «, we showcased the changes in the steepness of the pdf between day and night
time conditions revealing interesting features for various terrain types and temporal separa-
tions. In future work, we will explore the numerical weather prediction models capability of
capturing these mesoscale features to use as a benchmark. However, first we will explore the
mesoscale temperature increments and determine if a suitable model is capable of representing

this variable.
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Chapter 9

Characterizing the Probability
Density Functions of Temperature

Increments in the Mesoscale Range

9.1 Introduction

In this chapter, we investigate the properties of the mesoscale temperature increments within
the ABL utilizing a set of near-surface tower data as used in the pervious two chapters. Details
of the observational data are provided in Section 7.2. Thus far, we have demonstrated that the
normalized mesoscale wind speed increments behave in a quasi-unverisal manner over various
geographical locations and can reasonably be estimated with NIG and/or GHSST via the MLE-
based approach. Therefore, these results led us to investigate whether or not a similiar behavior
and capability exist within the temperature increment field in the ABL.

Within the small scale temperature field, experimental evidence suggests statistical differ-
ences between the velocity and temperature increments (e.g., [14, 174, 239]). These difference
reveal stronger intermitteny (i.e., larger fluctuations) within the temperature field, leading to

smaller scaling exponents ((p) for higher order moments (p >3), see Section 2.4. These studies
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determined ¢, values under which temperature was treated essentially as a passive scalar (i.e.,
the velocity field was unaffected by the transport of the scalar). However, in larger scale motions
it is believed that temperature characteristics, are considered as an active scalar, in which tem-
perature fluctuations directly affect the velocity field, via buoyancy forces (e.g., convection and
stably stratified flows). Therefore, the temperature field, within large-scale atmospheric flows,
is an important aspect to the dynamics of turbulent structures due to the inherent buoyancy
forces [45, 181]. Buoyancy manifests itself in a number of ways, e.g., in the premature trunca-
tion of the upper end of the inertial range, and in a direct influence on large scales. However,
there are no studies examining the traits of temperature increments within the mesoscale range,
especially from a pdf perspective. Unlike wind speed in the mesoscale range, the temperature
field exhibits strong variations as a result of the diurnal fluctuations that naturally occur due
to the change in the short and longwave solar radiation flux over the course of a diurnal cycle.
As such, one may expect that temperature increments in the mesoscale range also behave quite
differently compared to the wind speed.

A major motivation of this work is related to the impacts temperature fluctuations (or
equivalently density fluctuations) have on optical wave propagation. For instance, it is known
that fluctuations of scintillation (variations in optical properties through a medium) is directly
proportional to the changes in temperature fluctuations [92]. This relationship is still widely
studied within the small-scale range; however, influences on the larger scale fluctuations are
still a mystery. “Eddies of scale sizes smaller than Ly (i.e., outer length scale of turbulence)
are assumed statistically homogeneous and isotropic, whereas those equal to or larger than
Lo (i.e., eddy sizes on the order of 10s of meters) are generally non-isotropic (or anisotropic)
and their structure is not well understood, Andrews and Phillips (2005, [10]).” In practice, one
generally assumes that the temperature fluctuations (67°) behave under K41 law, in which the
small-scale features are universal and possess a scaling exponent of (» =2/3 through the inertial
range. However, as we have shown this assumption does not necessarily hold for observed data

for small scale temperature and/or wind increments. Therefore, the intent of this work is to
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expand this idea well beyond the inertial range to identify the pdf characteristics of temperature
increments within the mesoscale range to determine the behavior and showcase the capability
of pdf models to capture these traits. Given the stark diurnal variations, we will also explore

the similiarities and differences in the pdfs between day and night time conditions.

9.2 Probability Density Functions of Mesoscale Temperature

Increments

Figure 9.1 shows the pdfs of normalized temperature increments of three locations (Hgvsore,
Cabauw, and NWTC) for three separation temportal increments (7), no temperature data is
available for FINO1. Overlaid on each plot are the corresponding heights above the ground.
From this perspective, it is clear to see that the series of increments across the locations all
exhibit non-Gaussian behavior. Also, as separation increases the distributions begin to revert
back to a more Gaussian shape. However, unlike the wind speed increments (e.g., Figure 8.1)
for the same locations and time periods, the tails of the temperature distribution are clearly
heavier !. Additionally, the cores of these distribution reveal more peakedness indicating that
a large amount of the fluctuations are present around the center. This corroborates the ideas
presented in the small-scale temperature increment field.

Furthermore, and perhaps more intriguing, is the skewness evident in the left tails of each of
the locations (Cabauw shows a much more skewed appearance through the 60 min increment).
As shown in Chapter 6 with the wind-tunnel experiment, the temperature field also revealed
a strong left skewed distribution, which was speculated to be due to the ramp-cliff features
in the temperature field. However, in the mesoscale range this negative tail feature is more
pronounced and is likely due to the larger scale atmospheric features which produce abrupt
negative changes in temperature (i.e., cold frontal passage and convective downburst). This

artifact is not observed in positive tail since drastic positive changes in temperature do not

LOf note, the scale on the x-axis for the temperature increment extends to 6T /osr + 20, whereas the wind
speed range was between du/as, + 15, further amplifying the degree of heavy tailedness.
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generally exist. Finally, a subtle difference with respect to height is noticable, such that slightly
less intermittency is shown at smaller scales suggesting that fluctuations closer to the surface are
less prevalent as oppose to temperature fluctuations higher in the ABL. These results provide an
interesting perspective in the characteristics of the mesoscale temperature increments revealing
that 10 min to 6 hr scales behave similar to small scale scalar increments. Next, we will evaluate

fits of the pdf models.
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Figure 9.1: Probability density functions for mesoscale temperature increments across various
geographical locations and a range of temporal separation 7. (a-c) Hovsgre, (d-f) Cabauw, (g-i)
NWTC. Overlaid on each figure are the heights of the temperature measurements
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Fxyure 92 is an illustrative exam ple to highlight the t potential for the m esoscale tam per-
ature ncram ents for 7 = 10 m in. U tilizing the M LE “based estim ation for N Iz and GH SST and
M M E-based for LN S8, clearly them odelsperform wellw ith a few excsptions. For nstance, N I3
slightly underestin ates the keft tails of the distribution for C abauw and NW TC ,while GHSST
overestin ates the tails In all cases except for the heavy keft tail for Cabauw . M oveover, LN 5SS
show s deviation in both tails for all sites and it also over predicts the core of the distribution
sin ilar to what was revealed In F gure 8 1. The underestin ation and overestin ation in the tails
for NIz and GHSST, respectively, are sin ilar features seen in previous results of an all and
m esoscale ncrem ents. Therefore, to gah a full appreciation of the t, we will evaluation the

accuracy of NI and GH SST from a quantative perspective.

® T=10min 10 ® =10 min = 10 ® t=10min
—NIG —NIG s —NIG
== =GHSST JL == =GHSST == -GHSST
'LNSS Y% 107" wone 107'p o LNSS
- Gaussian 7 d Gaussian

pdf [6T / Ga‘r]

Figure92: 7= 180min.a)H vs r=100m ;b) Cabauw-80m ;c) NW TC-80m

9.3 Quantile-Quantile Plots and Goodness of Fit Test

The Q€ pbtsshown I Figures 93 and 9 4 reveal the quality of the ts for NG and GHSST,
respectively for three di erent 7 values at 10, 60, and 360 m ms. Sin ilar m ethods are usad In
Section 8 3.At rstglance, com paring the two di erentm odels, N Iz appears to have an overall
m ore accurate estin ation of the tem perature hecram ent distributions across all sites, except for

C abauw . At this bcation, the distribution showed a heavier and m ore skewed tailed com pared
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to H vs re and NW TC and therefore, GHSST outperfom s. Furthem ore, the NIG m odel is
consistently underestin ating the kft tail of the distributions across all ocations for 7 less than
60 m i, due to the heavy nature of the kft tail. T his feature is a result of m ore extrem e negative

uctuations occuring in the tem perature ncrem ent  elds. H ow ever, the core of the distribution
iswell captured by N IG . Thus, due to the very poor prediction w ith GHSST over NW TC and
H vs re, one could easily argue that N I is farm ore superior that GH SST and could con dently
beused for estin ating m esoscale tem perature mcrem ents. To further illustrate the accuracies of
them odels, as before, we w ill com pute the tw o-tailed A nderson-D arling test statistic com paring
these two m odels agamhst ocbsarvations.

Tabl 9.1 showcases the two-tailed A D results for the m esoscale tam perature increm ents
com paring observations with NI and GHSST . A faw conclusions can be drawn from this
table. First, at Cabauw , the A-D results show a much lower statistic com pared to the other
Jocations, which can bem iskading, given the resultscbtained from theQ -Q plbts. Thepercision
of the tem perature m easurem ents at this bocation are only to two decin alphbces (eg., 27315),
which creates m any non-unique valies when calkulating the hcrem ents. Since A-D com putes
its statistic based the size of the edf/cdf (ie., n i Eq.8.1) and the edf/cdf is determ ned from
only unijue valies, the statistic is therefore sm all n com parison to other cations. W ith that
said, only an nter-site or relative com parison can reasonably be conducted. This issue is not
relevant for wind speed given that the percision of the wind speed data and the num ber of
non-unijue valies are nearly the sam e for all bcations. Next, the Jeft ailrr =10 m I for
all ocations show a worse prediction as the values are generally higher for the keft tail. A lso,
the GHSST results are generally higher (least accurate estim ation) for NW TC and H sv re
and lower for C abauw . F nally, these statistics collaborate, the previous ndings, that NIG isa
m ore appropriatem odel for estim ating the tem perature increm entsw ithin them esoscale range.
Therefore, we w ill use the o param eter or NIG to illistrate the variations In the pdfs as a

fimction of 7 and then explre how the diumal variations in pacts these features.
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Table 9.1: A% and A% statistics for the mesoscale temperature increments for the four sites at
7 = 10 min, 60 min, and 180 min. The results are the median, 5% and 95% height averaged
values for the NIG and GHSST models. See Eq. 8.1.

PDF Model
NIG GHSST
0] [
= B E| % 50%  95% 5% 50%  95%
[
o L[ 6218 6083 77.47 [109215 1823.04 2553.93
® R | 4843 50.26 52.09 | 19556 279.87 364.19
§ o L|2123 3480 4838 | 23548 24935 26322
E R | 43.09 4752 b51.95 | 40222 41021 41820
e 460 L | 22653 38181 537.09 | 596.08 783.24 970.41
R | 207.22 417.11 626.99 | 859.78 1226.31 1592.84
1o L[ 1038 719314 528894 1.09 1.29 1.50
5 R| 1.00 1.28 1.76 1.08 1.33 1.51
E 6o L[ 370 677 1721 0.77 0.90 1.30
= R| 096 1.14 1.27 1.50 1.63 1.71
O 360 L[ 053 0.70 0.98 0.86 1.11 1.45
R| 257 3.25 3.61 3.85 452 5.00
1o L [106.15 168.24 170.99 | 11517 47489 56384
O R | 26.87 37.10 108.35 | 35.94  90.43 114.30
B o L[ 6523 14697 19633 [ 13710 502.72 516.38
= R | 60.64 89.14 136.01 | 7033 130.53 221.47
z 40 L | 55831 637.80 71730 | 42560 496.68 56776
R | 585.73 613.08 640.43 | 568.28 596.88  625.47
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Figure 9.3: Q-Q plots comparing temperature increments against the estimated NIG model
distributions for three different 7 (10 min, 60 min, and 360 min) and three locations (Hevsgre
(100 m), Cabauw (80 m), and NWTC (80 m)).

9.4 Day and Night Impacts on Temperature Increments

Before discussing the day and night comparison, Figure 9.5 shows « as a function of 7 for the

three observational towers from the entire dataset with each height overlaid on the plots. From

this perspective, one can clearly see that the height dependence is more evident than what

was shown in the wind speed increments (see Figure 8.6). For instance, the a values suggest
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Figure94: SameasF ure 9 3 except the com parison betw esn obsarved tam perature ncram ent
and GHSST .

that for higher altitude the tem parature hcram ents are slight m ore ntemm ittent (Jower o) for
an all7 and the hterm itency di erence becom esm ore enhanced as ssparation ncreases, egpe-
cially for Cabauw and NW TC (m ore cam plx terrain). The ntem ittency is m ore pronounced
at higher altitudes and larger 7, suggesting that variations in the larger scale ncram ents is
greater at higher heights as opposed to near-surface w here the distribution approach G aussian.

For the near coastal site, H vs re, shows a very consistent, m onotonically ncreasing trend

133



w ith Increasing ssparation dem onstrating a quasiuniversalnear-surface boundary layer form a-
rihe environm ents. T his behavior is not surprising since the diumal variations are m nuscule
near ocean surface, how ever, this param eter-based representation is unique given that we have

proposad an underlying distrbbution to describe these features.
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Figure 95: NI3 param eter (o) for full series of tem perature ncrem entsas a function ofr for
alH vs re,b) Cabauw, and ¢) NW TC fordi erent heights.

N ext, the tem perature data was sgparated mto day and night series in accordancew ith the
sam e procedures used in Section 8 5. F gure 9 6 reveals nteresting di erences betw een day and
night. In particular, Figures 9.6c and 9.6d (Cabauw) show a distinct di ersnce betweenn night
and day, such that the a values, as a function of 7, change uniform Iy w ith respect to height
suggesting a wellm ixed environm ent up to 200 m . H owever, during theniht time period there

are clear di erences betw een the heghts, w here the Iow er levels show am ore G aussian behavior
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(larger o) at larger scaleswhile m ore nterm ittency (wer o) is evident at higher heights. This
ntrigung nding ndicates that as stability hcreases near the surface, during the night, the
e ects are f£lt beyond 30 m in tam poral scake and m ore ntem ittency (ower a) is observed
at higher altitudes at larger scales. Interestingly, vet not surprisingly, the full series shown n
Figure 9 5b depicts a hybrid of the day and night plbts.

As for Figures 9 6a and 9.6b, at H vs re, the change h« with ncreased ssparation (7) is
not as evident. H owever, there appears to be a m nor change w ith respect to height at larger
grales, but not as pronounced as C abauw . The day tin e results is nearly dentical to the full
series requt further mdicating the m arine in uence on the tem perature ncrem ent series.

Finally, the complkx temrain (le., NW TC) gures show the o valies during night tine
ncrease sow Iy with ncreasing 7 w ith no cbvicus height dependence as shawn over C abauw .
However, this slow ncrease I a suggests that the tem perature uctuations ram ah relatively
interm ittent com pared to the day tim e In which the distrdbbution quickly progress to a m ore
G aussian distrbution w ith crease ssparation. The 2 m curve during the day show s a soong
di erence perhaps ndicating that the very near surface is characterized di erently than 50 and
80m heights.These results are rem arkable given that physicalevidence, and di erencesbetwean
day and night conditions can be cbserved and explained through the exam nation of a single
N Iz m odelparam eter.M orew ork isneaded to further explore other physical processes, how ever,
we can have con dence that the NIG m odel is a suitablke tool to estin ate the distribution of

the m esoscale tam perature ncram ents.

9.5 Conclusion

I this work, we exam ned the m esoscale tem perature increm ents and found that there are
indead quasiuniversal features that exist over a long term period of m easuram ents. The tails
of the corresponding tem perature ncrem ent pdfs do portary rem arkable sim iliarities to the
an all scale countparts. Tn fact, the tem perature ncrem ent n the m esoscale range exhibits

heavier tailed and m ore skewed distributions com pared to sn all-scale tem perature ncram ents.
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Figure 9.6: NIG parameter (a) for day (left column) and night (right column) series of tem-
perature increments as a function of 7 for a)-b) Hevsere, c)-d) Cabauw, and e)-f) NWTC for
different heights.

A similiar conclusion was found for the comparison between the mesoscale wind speed and
small-scale velocity suggesting that in general mesoscale motions, ~10 min or greater, have a
larger degree of intermittency than the small scale. Then we showcased the ability of each model
pdf and found that, like wind speed, NIG and GHSST were the most reliably through statistical

tests and evaluation. Finally, using NIG « parameter as a proxy, we highlighted the variability
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in the shape (geci cally steepness) of the distribution between night and day over a range of
separation . T he results suggest that the dist—bution of the tan perature ncram ents are in fact
m odulated by the dumal variations and are stobongly dependent on height over land, but are
uniform over ocean . Futurew ork w illbe required to thoroughly evaluate the Jarger scale In pacts
on cpticalwave propagation . H ow ever, providing a m odel capable of predicting the features of
the tam perature hcrem ent  eld in them escscale range isan su cient tool for further analysis.
n the next chapter, we will explre the W eather R esearch and Forecasting W RF) m odel to
determ ne how well it is able to predict the w nd speed and tem perature crem ents over the

cour=se of a one yearm odel sim ulated period.
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Chapter 10

Weather Research and Forecasting
Model Comparison Study of Wind
Speed and Temperature Probability

Density Functions

10.1 Introduction

Numerical Weather Prediction (NWP) models are used for many applications, for instance
forecasters rely on models to provide them with insight on how the weather will evolve over
time. Also, researchers use NWP models to explore past events to understand the physical
nature of complex atmospheric environments. For instance, the Air Force has become interested
in leveraging mesoscale models to develop forecast tools for optical turbulence (C?) forecasts
for various ground and airborne based laser communication systems [7]. These forecast rely on
accurate estimation of small-scale turbulent processes. However, due to the complexity of the
atmosphere and the inability for these models to resolve motions (e.g., turbulence) which occur

on the smallest scales, a general misrepresentation of these processes occur [93].
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To illustrate variations in the model results for different model configurations, Figure 10.1a
shows the wind speed increments for a range of 7 (temporal separation) from the New Zealand
Meteorological Service synethically generated wind series [255] over various wind farm locations
throughout the country. This data was created from the Fifth-Generation Penn State/National
Center for Atmospheric Research (NCAR) Mesoscale Model (MMS5) at 12-km horizontal reso-
lution and 10 min sampling over a five year period to aid in the prediction in wind fluctuations
(i.e., extreme winds) for wind energy purposes. Figure 10.1b shows the results from a simulated
wind dataset generated by the Weather Research and Forecasting (WRF) model run using
Yonsei University (YSU) PBL scheme on a 2-km grid over the continental United States at a
five min resolution over a seven year period (2007-2013). This dataset was also created for wind
energy applications [81].

Clearly, these models are quiet different even though they are both attempting to represent
the boundary layer wind speed characteristics. The NIWA dataset does not capture the large
fluctuations as evident by the quasi-Gaussian distribution shape over a range of temporal sep-
aration in Figure 10.1a, extremely underestimating the probability of occurrence of rare/large
fluctuating events. In contrast, in Figure 10.1b the WTK results appear to provide a better
representation, of the mesoscale wind speed increment characteristics as shown in the previous
chapters. However, the smaller scale (7= 10 min) fluctuations (e.g., the tails of the distribu-
tion) are much more pronounced, indicating an overestimation in the extreme events . These
drastic differences are alarming. Thus, it is essential to ensure the we understand the current
state-of-the-art models’ ability to properly characterize scale-dependent traits of the bounday
layer processes.

The objective of this study is to evaluate the performance of seven different PBL param-
eterizations within the WRF model (V3.6.1) and validate their performance based on wind
speed and temperature observational data from a one-year period over three simulated tower

sites. These tower sites have already been discussed at length in the previous chapters, they are

IThe x-axis scale extends to £20, which is well beyond our previous wind speed increments results.
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Figure 10.1: Examples of mesoscale model-based synthetic wind speed increments from a)
The National Institute of Water and Atmospheric Research (NIWA) in New Zealand [255] and
b) The National Renewable Energy Laboratory’s (NREL) Wind Integration National Dataset
(WIND) Toolkit (WTK) over the continental United States [81].

FINO-1, Hgvsgre and Cabauw towers. Using the increment pdf method for both wind speed
and temperature, an evaluation of the state-of-the-art models will be conducted. First, an intro-
duction and description of the model set-up/configuration and the specifics of the PBL schemes
will be discussed. Then, we will show how the WRF model simulations perform against obser-
vation using the pdfs, for a visual representation, as well as goodness of fit metrics, such as two
sample Kolmogorov-Smirnov (K-S) and Anderson-Darling (A-D). Next, we will highlight the
NIG-based estimate and corresponding fit for day and night conditions. Finally, we will briefly
discuss the potential for using this approach for developing a benchmark for model development

and validation.

10.2 Planetary Boundary Layer Parameterizations

Within the atmospheric planetary boundary layer (PBL) processes occur on a wide range of
spatio-temporal scales. For modeling purposes, parameterizations are required to account for

the sub-grid scale (SGS) motions (e.g., turbulence) for which the model is unable to resolve.
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Over the years research has been conducted to determine suitable approximations for these
motions by using similarity theories that have been hypothesized by [20, 76, 138, 179, 281].
Over time, these theories have been tested based on observational and laboratory studies and
have been applied to NWP models leading to the generation of numerous turbulence schemes.
There are two main catagories of parameterization which are imposed in the model, local and
non-local. Local schemes, as the name suggests, only consider neighboring vertical levels in the
model for their calculations, whereas non-local schemes communicate with mulitple levels to
represent the impacts of vertical mixing within the PBL [274]. The local schemes are believed
to restrict the depth of vertical mixing associate with larger turbulent eddies, while non-local
schemes have been shown to depict a deeper PBL during convection and strong nighttime winds
[69].

Another factor that is addressed in the development of PBL schemes is the turbulent closure
problem (i.e., more unknown variables than available equations), which uses Reynolds-averaged
Navier—Stokes equations. To account for this limitation, some level of approximation is required
either first- or second-order which parameterizes either the covariance or triple-covariance term,
respectively. For first-order, the flux-gradient (K) theory approach is used, (see Eq. 10.1).

) ! !

. W =-K, — . (10.1)

. Fapef —
;o vw = Ky,

s

Higher order schemes have been developed invoking explicted calculations of the prognostic
turbulent kinetic energy equation (TKE, see Eq 10.2). In some instances, there is a non-integer
order scheme. For example, 1.5-order closure schemes estimate second-order TKE by computing
second-order moments of some variables (e.g. potential temperature covariance) and first-order
for others [69, 246].

1 (9m — U ﬁd_v

%_ —'uw__
9t p 0Z oz "oz

+B(w') —e. (10.2)

It has been shown that the PBL parameterizations have the greatest impact on the modeling
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of surface variables. Thus, for this work, we have chosen seven different PBL schemes to evaluate

which are briefly described here:

e Mellor-Yamada-Janji¢ (MYJ) [120, 121, 173] - 1.5 order TKE closure scheme w/local
mixing, invokes prognostic equations for TKE.

o Mellor-Yamada-Nakanishi-Niino level 2 (MYNN2) [187]- 1.5 order TKE closure scheme
(similar to MYJ) introduces three mixing lengths for buoyancy, surface and turbulence
layers.

¢ Mellor-Yamada-Nakanishi-Niino level 3 (MYNN3) [188] - 2.0 order TKE closure scheme
(similar to MYNN2), with higher order moment computation.

e Quasi norma scale eliminationl (QNSE) [247] - 1.5 order local TKE closure and provides
improved potential temperature profiles.

e Total energy-mass flux (TEMF) [11, 171, 227] - 1.5 order TKE closure with both a local
and non-local component activated for stable and unstable conditions, respectively.

e University of Washington (UW) moist turbulence [50] - 1.5 order local TKE closure and
performs well in night-time stable boundary layers.

e Yonsei University (YSU) [113] - Non-local K closure (First-order) scheme. Determines
height of the PBL better by explicit treatment of the entrainment processes.

Associated with each of these schemes are surface layer schemes, based on Monin-Obukhov
similiarity theory, (see Eq. 6.2, as an example). Therefore, the following surface layer-based
scheme were incorporated with the various PBL parameterizations: Eta similiarity with MYJ
and UW; MYNN surface layer with MYNN2 and MYNN3; MM5 similarity with YSU; QNSE
similiarity with QNSE; and TEMF similiarity with TEMF. In addition to these PBL-based

schemes, the following section will discuss the other key aspects of the WRF model set-up.

10.3 Model Configuration

The WRF model is a fully compressible non-hydrostatic mesoscale NWP model that is used for
both operational and research purposes. The models infrastructure is extensive and incorporates

numerous phases, which is described in more detail in the WRF technical notes by Skamarock
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Figure 10.2: a) WRF domain configuration. The circles represent the approximate locations
of the simulated towers at Hovsgre (@), FINO-1 (@), and Cabauw ( ). b) Model’s vertical grid
resolution versus height in AGL (km). The inset depicts the 10 lowest vertical grid points which
are considered in this study.

et al. (2004 and 2008, [228, 229]). To evaluate the statistical properties of PBL wind speed and
temperature increments, a one-year period (2012) simulation for all parameterizations were
generated over the North Sea. For all the model simulations, the WRF pre-processing system
(WPS) was used to construct 3-one way nested domains (d01-d03). The innermost domain (d03)
consists of a 3 x 3 km horizontal resolution with a domain size of 552 x 813 km. The middle
domain (d02) had a grid spacing of 9 km, while the outer domain had 27 x 27 km horizontal
resolution. The vertical resolution for the three domains contained 51 eta levels from the surface
up to 16 km AGL with at least 23 levels below 2 km to better resolve the PBL features (see
Figure 10.2). The center of the domain was strategically placed to encompass the three tower
locations with enough separation and influence from the sides of the domain. The simuluated
tower data was generated by utilizing the tslist option on WRF and was placed at the nearest
grid point associated with the observed tower latitude and longitude dimensions. For the two
intermost domains, U and V components of the wind and temperature were output every time

step (45 and 15 secs) for d02 and d03, respectively for each tower level up to 16 km AGL. A
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10-m in m ovihg average and downsam pling was perform ed for this ncrem ent analysis in order
to directly com pare w ith the 10 m in sam pling rate of the cbsarvational data, sin ilar approach
wasused forNW TC n Chapter 8.

TheU S.G eolbgicalSurvey (U SG S) data wasutilized for the boundary conditions (ie., lJand-
use and topography) at 2 resolution for the m ddle dom ain (A02). However, for the innerm ost
dom ahn (d03) thenewly mplEm ent GM TED 2010 30-s=c high—resolution data was hcorporated

[197] to test if any e ects are seen by changing the topography. Furthem ore, the European
C entre forM edim R ange W eather Forecasts ERA -Interin archive data wasused for the initial
and boundary conditions and wasnudged i the sim ulations every six hours during the one year
period using the W RF FourD in ensicnal D ata A ssin flation (FDDA ) m ethod. A nalysis nudg-
g of the tem perature, w ind, and water vapor m ixing rati are applied In both dom ains w ith
no nudgihg In the PBL.No feedback from nner dom ain to outer dom ain is applied to avoid
hnfom ation exchange from nests and parent dom ains, since our intent is to test the speci ¢
behavior of the dom ains and not have the averaged elds from the chid dom ain fad back mto
the parent. For this study, we were interested In understanding the in pacts between the do-
m ansand dd not want the ln uences from higher to Jow er resolution . T he physics packages for
the sim ulations consisted of the ollow g param eterizations:M irophysicsW RF single-m am ent
5-clhss schem e W SM 5); shortwave and ongw ave radiation schem e, Rapid R adiative Transfer
M odel for G IbbalC lin ate M odels RRTM G ); CumulusK ain Fritsch cum ulus schem e; and land
surfaceN oah schan e. The cum ulus schem ewas only applied for d01-d02 where the grid resolu-
tion was greater than 5 km .Forthe nerdom ahn (d03 at 3 km resolution), explicit m irophysics
acoounts for all the cloud processes R42].M oreover, the land surfacem odel (LSM ) is cam prissd
of il tem perature and m oisture in four layers, which attem pts to account for the sub-grid
scalke hteractions between the Jand-atm osphere hteractions. The LSM plays an in portant role
w ith m ore com plex PBL schem e, so further work is necessary to test the sensitivities betw een

various LSM schan es.
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10.4 Wind Speed and Temperature Probability Density Func-
tions from WRF

For an illustrative example, Figures 10.3 and 10.4 depict the wind speed and temperature
increments for 7 at 10 min (left column) and 180 min (right column) for the Cabauw tower
location at ~200 m AGL. Also, included in these figures are the differences between the 9 km
resolution domain (d02, top row) and the 3 km resolution domain (d03, bottom row). Overlaid
on each figure are the seven simulations with the different PBL schemes (colored symbols)
and the corresponding observed wind speed and temperature increments at Cabauw (z = 200
m). From a visual perspective, all simulations are lined up with the observations remarkably
well. However, there are distinet differences which require further evaluation. For instance, in
Figure 10.3, the tails of the distributions for the model simulations, at 7= 10 min, are slightly
heavier than the observations, while each model shows a slight variation between one another.
However, as separation increases to 180 min the model and observation appear to be more in
line.

Furthermore, the higher resolution simulations (d03) are indicating an even larger difference
in the tail features as well as near the core of the distribution. Figures 10.11c and d gives an
indictation how these features vary between times of day suggesting that the deviations between
observations and models are more pronounced during the day time. Even after the moving
averaging operation, this distinct feature over a higher degree of intermittency is present. It
was recently shown that increased resolution does not necessarily improve results [108, 279].
Moreover, Frehlich and Sharman (2008, [93]) discussed the effective model resolution based
on structure function (SF) and spectra analysis. They remarked, “As NWP models move to
higher resolutions, the smaller scale features, such as mountain waves and convectively induced
gravity waves, will introduce modifications to the model-derived average spatial statistics..”
Thus, increasing the resolution may not necessarily result in improved wind speed increment

statistics. Additionally, it was shown by Larsén et al. (2012, [149]), using model simulations
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from a range of resolutions (from 50 to 15 km), that the simulated winds from mesoscale
models remove the variations because of spatial and temporal averaging effect by revealing a
steeper spectal slope (-3) compared to observations (-5/3, equivalently 2/3 in structure function
scaling) at higher wavenumbers (> 2 day™! or equivalent temporal scale, 7 < 12 hr). Given
our results, suggesting larger fluctuations with higher resolutions, and the previous studies, it is
clear that further improvement on sub-grid scale processes are required. To address the subtle
difference between the PBL schemes, in the next section, we will provide a statistical evaluation
of pdf fits, but first we will discuss the variations in the temperature increment field.

Figure 10.4 reveals the temperature increment pdfs from the one-year model simulations and
observations from the same tower location/height. Similar to the wind speed increment pdfs,
these pdfs closely resemble the corresponding observed temperature increments over Cabauw at
a tower height of 200 m. However, unlike with wind speed, the higher resolution model results
are more closely in line with the observations, except for TEMF. Also, with increasing temporal
separation the models continue to closely mirror the observations. This suggests that regardless
of the PBL scheme the mesoscale models can accurately predict the temperature increments
well. However, as shown previously in Chapters 8 and 9, the visual inspection is only a part of
the story, to fully grasp the fit of the pdfs and a statistical evaluation is required to provide
discriminatory power.

Additionally, in these chapters, a much longer period (104 years) of time was evaluated
as opposed to the l-year period utilized in this modeling studying. Therefore, to illustrate
that 1-year WRF data is sufficient for this type of increment analysis, Figure 10.5 shows the
comparison between the 1-year Cabauw observed wind speed increment data (left panel) and
the 14-year Cabauw observed data (right panel). The 1-year simulated model data is overlaid
same as the previous two figures. From this visual perspective, it is clear to see that the majority
of the distributions have a similar appearance, however, the tails of the distribution for the 14-
year period extends beyond the model data merely due to the fact that more data is available.

Also, from a statistical perspective, these two produce nearly the same results. For instance,
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Figure 10.3: Pdf of wind speed increments comparing observations and WRF results for seven
PBL schemes. (a) and (b) are wind speed increments for 7 = 10 and 180 min from d02 domain

and (c) and (d) are same except for d03. The series are normalized by their respective standard
deviation of their increments (e.g., osy).

the K-S test statistic for the Cabauw 1-year data comparing the TEMF scheme (left panel)
is 0.0776. Similiarly, for the 14-year data the comparison between l-year model simulation
using the TEMF scheme and 14-year observational data produces a 0.0776 K-S test statistic.

This example provides evidence that generating a 1-year simulation is sufficient for evaluating

mesoscale features within NWP.

Another factor with the evaluation of pdfs is the choice of bin selection. This issue was

briefly addressed in Section 5.5 using small-scale turbulence data to test the sensitivity of the
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Figure 10.4: Same as Figure 10.3 except for pdf of temperature increments

ST /o Ogr

GoF test statistics. In the case with the pdfs displayed above (specifically on Figure 10.3c) with
MYJ), it is observed that the tails of the pdfs are not monotonically decreasing, such that the
probability of extreme events predicted by the models is higher than the smaller du/o ., values.
To test ths cause of this artifact, Figure 10.6 shows three different bin selection based on the bin
width and maximum/minimum range. When increasing the bin with from 0.25 in Figure 10.3
to 0.5 in Figure 10.6a) the upward trend near the tails, especially for MYJ, is still evident.
Similarily, as you decrease the bin width to 0.1 in Figure 10.6b) the trend continues. However,
when the maximum/minimum range increases the upward trend begins to erase. Therefore,

when displaying and comparing pdfs, it is important to choose a proper bin set-up otherwise
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Figure105: W ind speed ncrem ent pdfatT = 10m ins, a) Cabauw 1-year observations and 1-
year d03 m edeling results for the sin ulated tow er dentical to Figure 10 3c), b) Cabauw 14-year
cbservations and 1+year d03 m odeling results for the smubted tower. These two  gure produce
nearly denticalK -5 resultsbetween the two com paring the PBL sthem es and the observations.

results can vary adhg to in proper characterization and evaluation . The next section w ill also

show case the variations In results for the other two simulated towers, FINO 1 and H vs re.
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Figure 106: Di erent bin-w idths to showcase the sensitivity to the choie of pdfbinning. The
llow ing is the dynam ic range (m aximum and m inum ) and binw dths for the gures above:
a) £12 and 05 width,b) £12 and 0.1, ¢) £15 and 025.
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10.5 Statistical Evaluation of the Probability Density Functions

To examine the variations between the different PBL schemes, two 2-sample goodness of fit
tests will be conducted using Kolmogorov-Smirnov (K-S) and Anderson-Darling (A-D). Similar
to the previous K-S and A-D tests, the 2-sample version utilizes the empirical distribution
functions (edf) of the sample. In this case, the comparisons are between the observed increment
distributions and the distributions from the seven PBL simulations for the one-year period over

the three tower locations. Eq. 10.3 shows the K-S (Dy) test statistic calculation,

Dy = sup |Fp(z) — Fin(x)|, (10.3)
x

where F,, represents the different model simulations and Fj, is the observed data. In addition
to the K-S statistics, a critical value can be determined, for given a confidence interval (), for
which one can either accept or reject the hypothesis that the two distributions are the same,

see Eq. 10.4.

(10.4)

nm

where D, is the Kolmogorov-Smirnov critical value, n and m are the sample sizes for the
observed and model data, respectively, and ¢, is 1.63 based on an a value of 0.01. For this
set of data, D, is ~0.01. Therefore, the hypothesis is accepted if the calculated D, value is
less than 0.01 and vice-versa. Figure 10.7 through Figure 10.10 show box plots of the various
PBL schemes for each location (FINO1, Hovsore, Cabauw), temporal separations 7 (10, 60,
and 360 mins) horizontal resolution (d02 and d03) and variable increment (wind speed and
temperature). Within in “box” are the Dy, values for each height at the different locations.
Also, on each figure is a horizontal dashed line indicating the D, value.

Figure 10.7 is the wind speed increment comparison for the 9 km horizontal resolution
domain for 10, 60, and 360 min separations. First, the Dy, results for nearly all three plots reveal

that the null hypothesis can be rejected, such that the model and observational data are not the
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same distribution. However, as temporal separation increases the quality of the fit improves. In
terms of the various model, there are little differences for each location. However, TEMF scheme
performs the worst at small separations, which may be due to the non-local/local aspects of
the scheme leading to inconsistency in the long-term statistics. Despite previous studies (e.g.,
[116]) revealing TEMF’s ability to capture the thermodynamic vertical structure of the PBL
well, our results indicate that the wind speed increments within this scheme are problematic
from a long-term statistical perspective. However, as separation increases TEMF indicates an
improvement and slightly outperforms the other models at 360 min increments. The models
overall show more variability (i.e., more spread in the box plots) at Cabauw suggesting that in
more complex terrain greater differences ensue for the wind speed increments at small scale.
Likewise, as separation increases, the variability in the overall results are more diverse suggesting
further uncertainty with respect to height at larger increments. Although the variability at
Cabauw is greater, the test statistic at small scales across all the models (except UW) reveal
the lowest value is achieved at Cabauw. In terms of the best fit between all the models, it is
difficult to make a concrete conclusion, however, for 10 to 60 min increments QNSE and MYJ
appear to perform slightly better with the two MYNN schemes indicating the least amount of

variability (i.e., more consistent prediction throughout lower BL).
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Figure 10.7: Boxplots of Dy, for d02 for a) 10 min, b) 60 min, and ¢) 360 min increments.
The set of box plots represent different locations for each of the seven PBL schemes (x-axis).
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Figure 10.8 shows the Dy, results for wind speed increments as the resolution of the model
increases. As it was shown in Figure 10.3¢c, the model pdfs for small scale separation deviate
the most and shows a greater degree of intermittency within the increment series. This finding
is confirmed by the Figure 10.8a as the Dy, values are nearly half a decade (or a factor of
5) higher than the d02 results for 7 = 10 mins. Similiar to d02, the differences in the models
are difficult to distinguish, though TEMF is also inferior to the other models. However, as
separation increases to 360 min TEMF improves to at or below the 0.01 critical value with the
other models closely behind?. In fact, the higher resolution results begin to slightly outperform
the lower resolution at larger scales suggesting that the impact on the resolution is lost at large
scale motions. This is finding is different than what was previously indicated when examining

the smaller mesoscale range and the fact that higher resolutions performed worse.
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Figure 10.8: Same as Figure 10.7 except Dy, results for d03.

Next, we will examine the temperature increment comparison between the two tower loca-
tions (Hgvsgre and Cabauw). Figures 10.9 and 10.10 are in the same format of the previous two
figures, however, there are greater discrepancies between the sites in terms of the temperature.
For instance, at small scales the (Dy,,) results are Cabauw are nearly a factor of 5 higher than

Hovsore. There are two possible causes for these differences: (i) the terrain influences are more

2The model results are largely above the D, value of 0.01 indicating the models do not fit the observations
according to K-S test, however, this statistc has shown to be overly sentitive, due to slight shifts in the distribution
[146]. Further evaluation is required to provide an alternative approach.
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pronounced at Cabauw compared to the Hgvsgre resulting in a difficulty for the models to
capture the diurnal variations with great accuracy. (ii) As addressed in Section 9.3, the poor
decimal percision of the observed temperature measurements at Cabauw leads to problematic
statistical results, even though Figure 10.4 suggests otherwise. Though as separation increases
the these difference are minimized. In terms of the model to model comparison, again, there
are only subtle differences to report. However, for Figure 10.9a, the small scale Temperature
resuls show TEMF as the more superior model opposed to the wind speed increments. This
results in more in line with [116] in their evaluation of the local and non-local impacts on the
thermodynamic structure. Even though, from a visual perspective, the TEMF model shows
more deviations from observations in the tails of distribution (see Figure 10.4), the statistics
suggest that this difference is not as large of a factor for determining the quality of the fit.
Furthermore, for Figure 10.10, there is clear reversal in TEMF with the two MYNN schemes
outperforming all the models for all nearly the entire range of separation. This suggests that the
higher-order TKE schemes, at higher resolutions, are more capable of predicting the observa-
tional temperature increments. To explore further, we will examine the 2-sample A-D statistic

AZ_ to determine a more approximation test for the tails of the distributions.
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Figure 10.9: Same as Figure 10.7 except Dy, results for temperature increments for only
Havsgre and Cabauw towers.

Similar to the 2-sample K-S test, A2, compares two-sample distributions against one an-
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Figure 10.10: Same as Figure 10.9 except the Dy, results for d03

other (e.g., observed versus WRF model data). In this computation, we are taking into account
the number of “ties” that exist in the data. In other words, the repeated samples within the

data are being omitted since this affects the results in a negative way, see Eq. 10.5:

Aﬁmzz_l_z %(NMEJ_nﬁBJ)zf (105)

where M ;; is the cumulative distribution function (cdf) from each individual sample observation
(n) and model (m ) with k equaling two for the number for series and n; being the individual
sample sizes. B ; is the combined cdf and N is the total sample size of B evaluated for length of
the unique (non-repeated) sample, L — 1. Finally, 1 represents the pdf of the combined model
and observed data series. The results for the A2 , statistic are presented in Table 10.1 for
the wind speed increment comparison for the three locations and four different  values at d02
domain (this domain will only be shown here). In this Table, the results show the median values
from all levels for the given observational tower and respective values. A few conclusions can
be drawn from this table.

First, the overall trend of the test statistc suggests that as separation increases the re-
sult generally improves. Second, in terms of the specific schemes, it becomes more clear that
the TEMF parameterization for small scale wind speed increments is by far underperforming

compared to the other models for all locations. As mentioned in Angevine et al. (2010, [11]),
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Table 10.1: The median two sample Anderson-Darling test (A2, ) results comparing the various
WRF model wind speed increment distributions against the observed pdfs for 2012 for d02 (9
km).

SITES
FINO-1 Hovsore Cabauw
| 7 (min) ] 10 60 180 360 10 60 180 360 10 60 180 360

MYJ 21.91 29.72 29.04 20.47 | 27.22 21.72 10.02 13.63 | 33.82 2483 1883 17.23
MYNN2 | 28.32 2898 24.07 1841 | 42.36 23.29 7.09 10.24 | 30.36 23.56 13.49 11.79
MYNN3 | 34.17 3237 23.17 14.07 | 48.23 25.14 7.13 10.37 | 25.06 23.37 11.87 11.92

QNSE 16.62 10.31 1223 998 | 28.66 11.57 7.09 12.01 | 54.06 27.13 10.03 17.35

TEMF | 146.08 51.20 20.17 7.68 | 226.90 49.86 840 4.93 | 119.87 30.74 10.65 5.90

Uw 17.00 2446 27.24 1759 | 17.30 11.38 567 9.45 | 43.92 1945 6.55 5.82

YSU 24.53 22,79 2258 11.49 | 30.74 21.00 10.23 1244 | 50.06 2598 586  3.90

PBL Schemes

this hybrid local/non-local scheme tends to generate an excessive amount of moisture flux in
the lower cloud bounary layer, which perhaps modifies to the wind speed fluctuation over the
North Sea locations, considering shallow stratocumulus clouds are present in this area. But, as
separation increases this scheme begins to dominate indicating that this influence is lost within
large scale motions. Furthermore, the QNSE and UW appear to be more accurate for the two
locations which are near or on an ocean surface (FINO-1 and Hgvsgre). It was discussed in
Cohen et al. (2015, [69]) that UW and QNSE schemes provide a more accurate depiction of
stable boundary layers, which is a characteristic of maritime environments. The two MYNN
schemes perform worse over the water but are the most accurate, especially at small scales,
over land. From these statistcs, a few conclusions can be made based on the performances of
the different PBL parameterizations. Next, we will examine the temperature increments using
the A-D test statistic.

In Table 10.2 depicts the median A2 results for the mesoscale temperature increments series
over two tower locations comparing PBL schemes for the d02 domain against observations.
Similar to the results shown in Figure 10.9, the accuracy at Cabauw is problematic, but it
greatly improves with separation. Again, the model to model comparison does not provide
a significant demarcation, however, at 7=10 min for Hgvsgre it is clear that TEMF is more

accurate on average over all the levels with a value of 58.28. While, throughout all separations,
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Table 10.2: Same as Table 10.1 except A2, for temperature increments
SITES

Hgvsgre Cabauw
| 7 (min) | 10 60 180 360 10 60 180 360

MYJ 114.82 37.68 44.74 97.34 | 758.68 81.94 29.35 61.43
MYNN2 | 71.15 13.05 15.34 43.16 | 726.76 57.25 13.79 15.29
MYNNS3 | 82.10 13.37 13.80 35.46 | 742.80 50.89 12.62 8.63

QNSE 76.98 21.36 18.62 43.55 | 746.55 55.26 14.29 23.71

TEMF 58.28 22.20 48.37 98.76 | 782.13 70.87 38.57 67.42

Uw 84.64 30.87 31.01 59.76 | 791.91 49.07 11.83 33.43

YSU 77.34 1515 9.97 29.32 | 720.78 50.71 12.37 14.62

PBL Schemes

YSU performs slightly better than the two MYNN schemes, while MYJ performs the worse.
Over Cabauw, the best predictions are from YSU. YSU is a non-local scheme which has pros
and cons relative to the time of day or year, however over a long-term period it is shown to
handle the temperature increment data over land the best.

The K-S and A-D 2-sample statistical evaluations of the long-term wind speed and tem-
perature increments between observations and various PBL schemes were able to provide some
level of quantative assessment. Even though from a visual perspective, the various schemes
appeared to be very similar, it was shown that there were difference and could be related to
previous findings from the various PBL schemes. TEMF showed to be inferior at small scales for
wind speed increments, while QNSE and MYJ outperforms the other models overall. However,
from a statistcal perspective, for temperature increments TEMF is better at small scales and
YSU is slightly outperforms over land. In the next section, we will use the NIG distribution
estimation to further showcase model and observed data comparison between day and night

time conditions.
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10.6 Diurnal Variations in Wind Speed and Temperature In-

crements in WRF

As discussed in Chapters 8 and 9, diurnal variations occur within the wind speed and temper-
ature increment fields. Also, it is well-known that different PBL schemes have diverse solutions
under various stability conditions. Therefore, to illustrate the difference between the models
and observations over day and night time conditions, we estimated the model’s increment dis-
tributions using NIG, separating the data following the same procedures used in Section 8.5.
We then show how the o parameters compare with the estimated « parameters of the observa-
tions from the three tower locations®. Figures 10.11 and 10.12 show a series of plots with the
o value for 7 values of 10, 60, 180, and 360 min for wind speed and temperature increments,
respectively from d02 and d03 domains. We performed bootstrapping on the observations and
calculated a 100 times for each randomized sample of du/oy, to obtain a range of a values as
indicated by the grey shaded regions. The left column of each figure represents the day time
increment series, while the right column is the night. First, Figure 10.11 shows two tower lo-
cations (Cabauw (a-d) and FINO1 (e-h)) at the 10 m and 40 m height, respectively. From this
perspective, it is clear to see that the estimated « values for all models are more or less in line

with the observations with some distinet differences:

e There is more deviation at Cabauw than FINO1, for night and day, especially at larger
scales indicating that the more homogeneous BL conditions provide a more accurate
prediction.

e The two Cabauw day time plots (Figures 10.11a and 10.11c) show the largest deviations
at larger scales MY J performing the worst.

e Figure 10.11a provides the worst overall estimation in & where the model underestimates
and overestimates it at small and large scales, respectively. This result was also shown in
Figure 10.3¢ as the higher resolution results indicated heavier tails at small scales. This
indicates that the day time series contributes the most to the high level of intermittency.

e The variation between night and day is clear, showing lower a values (more intermit-
tency/steeper pdf) throughout the range of scales and the models all more in line with

*Given the comparison of NIG and the mesoscale observations shown in Chapters 8 and 9, we are confident
that NIG-based estimations are capable of capturing the scale-dependent traits for the WRF simulations.
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observations.

e The night time prediction is the best over the water and is nearly perfect at FINO1 at z
= 40 m.

Finally, we will examine the temperature increments in a similar fashion. Figure 10.12

shows the range of a values comparing the model and observations for Cabauw (z = 10 m) and

Hgvsgre (z = 2 m). Similar to the previous figure, the models within a reasonable range of «

values compared to observations. However, there are more significant deviations which need to

be addressed:

Like with the wind speed increments, the temperature field reveals a greater deviation at
Cabauw than Havsere, for night and day, especially at larger scales indicating that the
more homogeneous BL conditions provide a more accurate prediction.

At small scales within the Cabauw plots, the o values for all the model simulations
mischaracterize the steepness of the temperature pdfs, resulting in a less heavy tail within
the models overall.

In constrast to the statistical evaluation of temperature evaluation for the full increment
series, the TEMF model produces the largest deviations for the day time conditions over
Cabauw.

The night time conditions at the two locations reveal a poor (underestimation) prediction
of the a values for the models, at intermediate scales, suggesting that more temperature
fluctuations exist in the model.

At Hgvsgre, the estimation for the day time, d02 results are the best, while the other
plots indicate that there is a drastic underestimation in «a for the large scale temperature
increments for near surface temperature. However, all the models are well in line with one
another.

Given the ability of NIG, this type of parameter-based comparison can be a key method

of evaluating the perform of various models for long-term wind speed increments over diverse

geographical locations. Although, this method cannot provide a direct physical explanation, it

may be a valuable evaluation tool for the development of future PBL schemes.

To determine how well the o values from the models compare with the observations, a

root mean squared error (RMSE) calculation was performed for each 7 value. Tables 10.3

and 10.4 show the summed RMSE from the range of separations indictated on Figures 10.11
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Table 10.3: RMSE summed over the range of separation as depicted in Figure 10.11 comparing
the a values obtained from wind speed observations against the seven different PBL schemes.

PBL schemes

MYJ | MYNN2 | MYNN3 | QNSE | TEMF | UW | YSU

Cabauw - Day, d02 1.96 1.14 1.15 2.21 0.93 1.31 | 1.49
Cabauw - Night, d02 | 1.10 1.38 1.42 0.73 1.00 1.91 | 1.09
FINO1 - Day, d02 0.36 0.33 0.42 0.24 0.25 0.36 | 0.46
FINO1 - Night, d02 | 0.35 0.27 0.37 0.25 0.24 0.42 | 0.34
Cabauw - Day, d03 1.91 1.93 1.70 2.24 1.30 1.39 | 1.55
Cabauw - Night, d03 | 0.67 0.59 0.43 0.89 0.89 0.24 | 0.66
FINO1 - Day, d03 0.30 0.27 0.33 0.51 0.70 0.56 | 0.46
FINO1 - Night, d03 | 0.41 0.28 0.27 0.50 0.51 0.49 | 0.28

and 10.12 for the wind speed and temperature increments, respectively. From this perspective,
some conclusions can be drawn regarding the capabilities of the given PBL schemes to accurately
estimate the «a values. For instance, clearly from Table 10.3 overall the TEMF model appears
to be the most accurate despite having issues at small scales (7 = 10 min) from the GoF tests
over the entire range of data as shown in Figure 10.7. Also, over Cabauw during the day QNSE
appears to perform the worst, but does the best at predicting the night time boundary layer.
Moreover, the differences between the d02 and d03 results suggest only marginal differences over
the range of separations despite d03 depicting more deviations in a over Cabauw in Figure 10.11.
Finally, over the ocean all the models produce the lowest RMSE suggesting that the models are
more capable of handling smooth surfaces as compared to land surfaces.

In Table 10.4 the temperature increment data from observations are compared against the
model results from Cabauw and Hgvsgre. Overall, the RMSE for the temperature results are
not as good compared to the wind speeds. However, the best model for the d02 domain is
MYNN2 for temperature for day time conditions, while YSU is a close second. However, the
largest RMSE during the day is TEMF which is different from the a values estimated from
wind speed increments. Also, similar to the wind speed results over the ocean all the models
for the temperature increments perform better over near coastal environments (i.e., Hgvsgre)

as opposed to the land surface at Cabauw. Using RMSE to determine the quality of the a
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Table 10.4: RMSE summed over the range of separation as depicted in Figure 10.12 comparing
the a values obtained from temperature observations against the seven different PBL schemes.

PBL schemes

MYJ | MYNN2 | MYNN3 | QNSE | TEMF | UW | YSU

Cabauw - Day, d02 1.98 1.07 0.66 2.05 3.24 1.01 | 0.90

Cabauw - Night, d02 | 1.51 1.91 1.97 1.86 1.16 1.74 | 1.30
Hgvsgre - Day, d02 0.38 0.59 0.61 0.59 0.31 0.66 | 0.86

Hovspre - Night, d02 | 0.92 1.04 1.11 1.07 0.86 1.08 | 1.16
Cabauw - Day, d03 1.24 0.79 0.83 0.70 3.24 0.74 | 0.63

Cabauw - Night, d03 | 2.14 1.31 1.31 2.51 1.69 2.07 | 1.93
Hgvsgre - Day, d03 0.94 1.06 1.10 1.28 1.19 146 | 1.29

Hgvspre - Night, d03 | 1.08 1.21 1.28 1.49 1.66 1.75 | 1.37

estimates from the model provide a quantative metric to evaluate their performance against

the observations.

10.7 Conclusion

In this chapter, a detailed and quantative comparison was made for the wind speed and tem-
perature increments using seven different WRF PBL schemes. Using a one year simulation and
observations from three different tower locations near the North Sea, we showcased the ability
of the state-of-the-art model to capture the scale-dependent features of the increments. From a
visual perspective, the models all were able to represent the observed data well. However, when
higher resolution simulations were used the models showed heavier tailed features which weren’t
evident in the observed data. Using the 2-sample GoF metrics, K-S and A-D, we further iden-
tified various flaws with the set of PBL schemes. Finally, using the NIG-based estimation, we
showed the differences in the a parameter between models and observations for day and night
conditions. This approach provides a potential benefit for evaluating the model’s performance

and testing future model development.
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Figure 10.11: NIG parameter («) for day (left column) and night (right column) series of
wind speed increments as a function of 7 comparing seven PBL schemes against model esti-
mated a values for (a-d) Cabauw and (e-f) FINO1 for different heights for the d02 (a,b.e,f)
and d03 (c,d,g,h) domains. The observational data is computed using bootstrap method with
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areas correspond to the medians, 95th_75th percentile ranges, and 10th_ggth percentile ranges,
respectively.
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Chapter 11

C onclusions and Future D lrections

11.1 Summ ary of W ork

The purpose of this research was geared towards uncovering the statistical behavior of velocity
and temperature increments within the atmospheric boundary layer across a range of scales.
Utilizing a set of statistical distributions and a robust statistical estimation technique (i.e.
maximum likelihood estimation (MLE)), this study revealed a capability of accurately capturing
features of both the velocity and temperature increment fields. With the use of a variety of
goodness of fit (GoF) metrics, it was shown that the normal inverse Gaussian (NIG) distribution
is a prime candidate to be used as an estimate of the increment pdfs for a wide range of
atmospheric motions. This finding answered my second and third questions posed in Chapter 1
as to whether or not a given statistical distribution model is able to capture the behavior of
velocity and temperature fields across a range of spatio-temporal scales. This study is the first
to perform this type of comprehensive examination into the behavior of the increments fields.
Utilizing diverse datasets, including idealized, wind tunnel experiments, atmospheric tur-
bulence field measurements, multi-year ABL tower observations, and mesoscale models simula-
tions, this study revealed remarkable similiarities (and some differences) between the small and

larger scale components of the probability density functions increments fields. The features of
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these pdfs indicated a strong scale-dependent trait by which the tails of the distribution were
highly non-Gaussian at small separation and steadily transitioned to a more Gaussian shape
as separation increased. However, differences between the temperature and wind fields were
evident, such that the tails of the temperature increments were heavier and slightly negatively
skewed compared to the velocity counterparts. This finding provided an answer to my first sci-
ence questions, addressed in Chapter 1, as to the universal behavior of velocity and temperature
increments. Additionally, under various stability conditions, both in the large scale atmospheric
flows and controlled wind tunnel enviroments, the features of the pdfs marked differences which
revealed a larger degree of intermittency as separation increased. Even under these variations,
the NIG model was still accurate in capturing these unique traits. This finding helped answer
my fourth science question posed in Chapter 1.

In Chapter 4, we first demonstrated the capabilities of the NIG model and maximum like-
lihood estimation (MLE) method to deliver an unbiased estimation of higher-order structure
function with relatively small samples (less than 10%). With the use of extreme value theory
(e.g., Hill plots), the behavior of the tails of the distribution revealed the limitations in the
higher order moment estimation. The MLE approach was thoroughly tested using an idealized
and observed dataset giving further credence to its ability for practical use for other increment
fields. This work was then extended in Chapter 5 to explore the ability of other pdf models to
match experiemental small scale turbulence data, both in the atmospheric boundary layer and
in controlled experiments. Remarkably, both of these datasets portrayed very similar traits and
we accurately estimated with the NIG model. The other models showed potential, but according
to the GoF tests NIG outperformed generalized hyperbolic skew student’s t (GHSST), variance
gamma (VG), and lognormal superstatistics (LNSS). Also, the limitations of the method of
moments estimation (MME) and histogram binning techniques were shown through the use
of the LNSS model and the GoF evaluations. This confirmed that MLE-based estimation is
superior to MME. While, the empirical distribution function approach was shown to be best

for evaluting pdf models. Finally, the NIG parameters (a, B, pt, and ) were presented reveal-
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ing the capability of using parameter-based identification of the unique features of the velocity
increments. In Chapter 6, the impact stability has on the small scale velocity and temperature
increments were explored. From this analysis, it was clear to see, with the use of the NIG model
parameters, that various stability conditions modulate the flow across a range of scales. This
influence suggests that a greater degree of intermittency exist for larger scale flows under higher
stability, with the temperature field exhibiting a stronger influence to changes in stability.

In Chapter 7, the features of the mesoscale characteristics of long-term wind speed incre-
ments were explored over diverse geographical locations. Such an extensive dataset has never
been used to evaluate long-term statistics. It was discovered that, from a visual perspective,
these fields are quasi-universal. They also appear to behave in a similiar manner to the small
scale motions, except for exhibiting slightly heavier tails. We evaluated the wind ramp, up and
down, conditions observed in this extensive dataset to uncover the similiarities. Using the prob-
ability of exceedence as a measuring stick, it became clear that the differences between each
location and height were minor, but some deviations existed especially near the tails at £10
standard deviations. The most striking contrast between the locations occurred at NWTC sug-
gesting that complex terrain induces differences within the wind fields which are not observed
near quasi-homogeneous environments. The finding requires further investigation by studying
other complex terrain settings.

In Chapter 8, we examined the same mescoscale wind dataset to reveal the quality of the
pdf models’ fit to the normalized wind speed increments. Unlike with the small-scale turbulence
field, GHSST showed the best match for the mesoscale range at small scales (7= 10 min) due
to the model’s ability to capture the heavier tailed features. The GoF metrics revealed similar
results. However, from a Q-Q plot perspective, the NIG model showed some promise. Therefore,
as before, the NIG-based parameter () was used to explore the differences between day and
night increment fields. Quite interestingly, « for day time over all locations showed virtually no
height dependence along with portraying similiar features between locations. However, during

the night, over land, the influences of the stable boundary layer appeared to play a role in the
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variations, such that more intermittency was observed at lower heights and at larger scales.
This finding was very similar to the wind tunnel study further corroborating the influences of
stability regardless of the scale of motion.

The mesoscale temperature field across the diverse sites was examined next. It became clear
that the pdfs of temperature behave differently than the wind speed. For instance, overall the
tails of the distributions were heavier and slightly more left skewed than the wind. However,
this behavior was similar to the small scale temperature field. Also, the pdf models were shown
to fit the temperature increments with some accuracy as indicated by the GoF statistics and
the Q-Q plots. From this perspective, again, the NIG model was chosen and we showed the
variations between the sites during day and night conditions. Interestingly, during the night
over land an opposite result ensued as more intermittency was evident at higher heights with
increased separation. However, over the ocean uniform features in the pdf were observed. This
feature confirms the fact that diurnal variations are minimal over the ocean providing further
evidence that this unique approach for characterizing the ABL flows is a valid technique.

Finally, to address my fifth science question the WRF mesoscale model over a one-year
simulated period was examined to identify the capability of seven different PBL parameteriza-
tions to capture these unique features of wind speed and temperature increments. We produced
sub-minute time-series output data using the tslist option over three tower locations around the
North Sea. Remarkably, from a visual perspective, minimal difference were observed between
the mesoscale wind speed observations and all the different simulations. However, after exam-
ining the GoF statistics, the TEMF model underperformed compared to the other schemes
at 10 min increments. Also, the higher resolution run (3 km) was shown to produce an ex-
cessive amount of intermittency, especially in the wind field, indicating that higher resolution
runs do not necessarily improve results. Within the temperature field, the results for Cabauw
were shown to be problematic as they deviated significantly from Hgvsgre from a quantitative
perspective. However, more work is required to investigate the root cause. Addirtionaly, the o

parameter from NIG was used to showcase the diurnal variations between the WRF simulations
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and the observations. Overall, the model appeared to line up well with the observations, with
the most significant differences coming from the higher resolution simulations. This approach
provides a potential benefit for evaluating the model’s performance and testing future model

development.

11.2 Future Directions

Although this work was thoroughly conducted, we have just stratched the surface on the capa-
bility of utilizing our approach for understanding the characterisitics of the velocity and scalar
increment fields. In turbulence research, which utilizes pdfs to characterize the increment fields,
it is customary to simply visualize the quality of a model to represent a set of empirical turbu-
lence data. However, we have shown that visual evaluation of the quality of pdf fits can lead to
a mischaracterization. Thus, the need for statistical comparisons are essential for obtaining an
accurate representation of the fits. In future turbulence research it is highly recommended to
perform this type of GoF evaluation before claiming that a given pdf model provides a reliable
estimation of empirical data.

One benefit of utilizing the NIG pdf as an estimate for velocity and temperature increment
series is that one can easily compute all the moments of the distribution. With this capability,
a direct connection can be made between NIG and other statistical characterization methods,
such as structure function and extended self—similiarit;, v\cf’hich utilizes the absolute moments of
the increments. For instance, recent work introduced by Kiliyanpilakkil and Basu (2015-2016,
[135, 136]) discussed the statistical similiarities of mesoscale wind speed from a scaling (or
more specifically, ESS) perspective. However, the connection between ESS (or SF) and pdfs
are not thoroughly addressed in this work. It would be an intriguing to further investigate
the relationship between these methods. Since the inception of ESS_a number of turbulence

e(s have . . e, —
research has used it as an alternative for evaluating scaling characteristics with the inertial and

mesoscale ranges. However, to this day, no physically explanation into why such an “extended”

scaling range exists in turbulence under ESS.
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“In spite of several attempts to explain the success of ESS the latter is still not
fully understood and we do not know how much we can trust scaling exponents
derived by ESS. It would be nice to have at least one instance for which ESS not
only works, but does so for reasons we can rationally understand (Chakraborty et
al., 2010 [60]).”

Therefore, we strongly believed that in conjunction with pdfs, the ESS behavior and other
scaling descriptions, can be understood more extensively from statistical and physical perspec-
tives. In fact, now that a suitable model pdf has been identified, a possible relationship between
increment pdfs and ESS can be proposed using NIG. Efforts in this direction have recently
been conducted by Basu 2016 (unpublished work). However, now that there has been a more
rigorous evaluation of NIG across multiscales, more efforts can be made in this arena.

In terms of understanding the stability influences on the increment fields, our work uncovered
interesting features within small scale wind tunnel experiments and the mesoscale range in the
ABL. However, the small-scale atmospheric fields under various stability conditions were not
addressed and need further evaluation. Additionally, due to the constraints of our datasets,
we were limited to the lowest 200 m of the ABL. Therefore, in future field experiments it is
recommended to extended the observational footprint farther into the ABL to understand the
turbulent features that are present throughout the lower atmosphere, specifically near the top
of the boundary layer.

Furthermore, we showcased the ability of the WRF mesoscale models, with seven different
PBL parameterizations, to capture the wind speed and temperature increment field with some
level of accuracy. However, there are uncertainties and limitations which exist when using the
modeling and statistical approach proposed in the work. For instance, the mesoscale model has
many tunable parameters such as initial and boundary conditions and other physical parame-
terization scheme, such as with land surface schemes, which could have potential impact on the
prediction of these increment fields. Therefore, further sensitivity tests on these various model
set-up conditions will increase the understanding of predictability of the models using our sta-

tistical approach. In fact, an objective way to estimate the uncertainty of a model is to perform
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an ensemble prediction, which could then be applied to our statistical methods for the incre-
ment fields. Limitations in this technique also require further work. In particular, our approach
for characterizing the increment fields was examined from a 1-D perspective and was only con-
ducted using the two atmospheric variables. To gain greater knowledge of the full picture, a
future study should use of the 3-D model output space to not only evaluate the time-series of a
given variable, but to uncover the multi-dimensional characterization. Additionally, the higher
resolution results showed the greatest deviation from the observed data. Thus, a closer look
into different horizontal grid resolutions, such as 1 km, could shed light into the effective mode
SreWilich dwlpflw‘mam
resolution, similar to the structure function and spectra approach conducted b}}‘ [93].

From an application perspective, we gained a greater understanding of the wind ramp char-
acteristics benefiting the wind energy industry (see Chapter 7). This work showed that the tail
features of the long-term mesoscale wind increments revealed amazingly similar shape charac-
teristics from several well-known field sites from around the world. We strongly believe that our
results will tremendously benefit the future development of ramp forecasting methodologies.
However, differences at NTWC (i.e., over complex terrain) were evident, thus further studies at
other diverse geographical locations, utilizing our approach, would provide additional insight
into the quasi-universal features shown in this study.

In terms of optical wave propagation, additional work is needed to make a connection
between the eddy structure and the pdfs. For instance, the 1-D statistical description provided
in this work, can only provide a glimsp into the full picture of turbulence. Therefore, using
observational data from Light Detection and Ranging (LIDAR) systenif or other state-of-the-
art measurement tools, can allow one to visualize the turbulent eddies in the ABL and employ
our statistical description simulanteously to gain insight from both angles and provide a 3-
D picture of the behavior of velocity and scalar increment fields. As an illustrative example,
Figure 11.1 shows a time versus height plot of a scalar field (water vapor mixing ratio acting
as a great tracer) which depicts the development of the daytime ABL near Philadelphia, PA.

From this perspective, one can observe the building of the thermal convective plumes from
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Figure 11.1: 12-hr time-height plot of water vapor mixing ratio (g/kg) from LIDAR measure-
ments near Philadelphia, PA in August 1998 (adapted from Philbrick and Hallen (2015, [207])).

12:00 UTC (8:00 am local time) to 17:00 UTC (1:00 pm local time) throughout the lower
portion of the ABL. Then as the ABL interacts and mixes with the residual layer, evidence of
turbulent eddies can be observed. Moreover, turbulent eddies within the atmosphere may not
necessarily fall under the category of statistically homogeneous and isotropic and as stated by
Andrews and Philips (2005, [10]) the eddies of larger size are generally nonisotropic and their
structure is not well defined. There, using this type of measurement in conjunction with our 1-D
statistical approach for characterization turbulent features, a clearer picture can be presented
to understand the behavior of various atmospheric flows for a wide range of scales.

Finally, given that optical turbulence (C2) is directly related to the temperature increment
field, 8T, a future study can leverage on our approach using NIG as a tool for estimating
temperature fluctuations, as well as humidity, in both the vertical and horizontal direction for

applications in the field of optical wave propagation.
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Appendix A

Computational Codes

A.1 Normal Inverse Gaussian Distribution (NIG)

Estimating NIG parameters using method of moments estimation (MME) from sample mo-
ments, see Eq. 3.3:

YMethod of Moments Estimation of Parameters for NIG Distribution
%Written by Adam DeMarco: 4/15/2016

function [alpha, beta, mu, delta, zeta, chi] = nigpar(m1,m2,m3,m4)

%hInput:

%ml = sample mean

%m2 = sample stdev
%m3 = sample skewness
%m4 = sample kurtosis

%0utput:
YMethod of Moment estimation of alpha, beta, mu, delta, zeta, and chi
%parameters for NIG

YReference: Karis (2002; Statistics & Probability Letters; see page 46)
¥Similar notation appears in Aas and Haff (2006) NIG and Generalized Hyperbolic
YSkew Student’s t document (page 8). I am using their notation

mdx = md - 3; YFlatness (a.k.a. excess kurtosis)
if m4x > (5/3)*m3°2

gam 3/ (m2*sqrt (3*mdx - 5*m372));
beta = (m3*m2*(gam~2))/3;
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delta = (m2°2)*(gam~3)/(beta”2+gam~2) ;

mu = ml - betaxdelta/gam;

alpha = sqrt(gam™2 + beta”2);

zeta = (1 + delta*sqrt(alpha2 - beta"2))~(-1/2);

chi = betaxzeta/alpha;
else

beta = Nal;

delta = NaN;

mu = NaN;

alpha = Nal;

zeta = NaN;

chi = NaN;
end

Estimating NIG parameters using maximum likelihood estimation (MLE) from MME:

%Maximum Likelihood Estimation (MLE) of NIG parameters
#Written by Adam DeMarco: 4/15/2016

function [alpha, beta, mu, delta, zeta, chi] = nigpar_mle(x,alpha,beta,mu,delta)

% Inputs: the increment series (x), alpha, beta, mu, and delta obtained

% Method of Moments.
% Outputs: alpha, beta, mu, delta, zeta, and chi estimated using MLE

1b = [0 -Inf -Inf 0];
ub = [Inf Inf Inf Inf];

if isnan(alpha) == 0 & isnan(beta) == 0 & isnan(mu) == 0 & isnan(delta) ==

%TolFun: Termination tolerance for the objective function value.

%TolX: Termination tolerance for the parameters.

options = statset(’MaxIter’,1000, ’MaxFunEvals’,1000,...
’TolFun’,1e-20, ’TolX’,1e-20, ’Display’,’final’);

start = [alpha,beta,mu,deltal;
phat = mle(x, ’pdf’,@nigpdf, ’start’,start,...
’lower’,1lb, ’upper’,ub, ’0pti0ns’,options);

alpha = phat(1);
beta = phat(2);
mu = phat(3);
delta = phat(4);

zeta = (1 + deltaxsqrt(alpha”2 - beta~2))"(-1/2);

chi = beta*zeta/alpha;
else

alpha = Nal;

beta = Nal;
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mu = NaN;

delta = Nal;

zeta = Nal;

chi = NaNl;
end

Calculating probability density function (pdf) of NIG using model parameters:

YProbability Distribution Function (PDF) of NIG
YWritten by Adam DeMarco: 4/15/2016

function pdf = nigpdf (x,alpha,beta,mu,delta)

% Inputs: set of values from increments to be evaluated (x)

% alpha, beta, mu, and delta from Maximum Likelihood estimations

% Output: pdf of NIG

% Reference: Scott et al. (2011) Moments of the generalized hyperbolic distribution
% Computational Statistics

if isnan(alpha) == 0 & isnan(beta) == 0 & isnan(mu) == 0 & isnan(delta) ==

T1 = (alpha/pi)*exp(delta*sqrt(alpha”2-beta”2) - betakmu);
phi = 1 + ((x-mu)/delta)."2;

T2 = phi."(-1/2);

T3 = besselk(1l, (delta*alpha#*(phi."(1/2)) ));

T4 = exp(beta*x);

pdf = T1.*xT2.xT3.*T4;

else
pdf = NaN*x;
end

Calculating cumulative distribution function (cdf) of NIG using model parameters:

%Cumulative Distribution Function generation of NIG
%Written by Adam DeMarco: 12/20/2016
%This code is based on a code from FileExchange

function F = nigcdf(x,alpha,beta,mu,delta)

% Inputs: the increment series (x), alpha, beta, mu, and delta obtained MLE
% Output: CDF of NIG using integration (F)

N
F

length(x);
zeros(N,1);

pdfHandle = @(x) nigpdf (x,alpha,beta,mu,delta);

if beta>=0
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F(1) = quadgk(pdfHandle,-inf,x(1));
else
F(1) = quadgk(pdfHandle,-100,x(1));
end

if isnan(F(1))==1

return;
end
for k=2 : N
F(k) = F(k-1) + quadgk(pdfHandle,x(k-1),x(k));
if mod(k,1000) ==
fprintf (*%d\t%d\n’,k,N);
end
end

Calculating Inverse cdf of NIG using model parameters, used for generating Q-Q plots:

#Inverse CDF of NIG
#Written by Adam DeMarco: 06/14/2017
function Xi = invnigcdf(Fi,alpha,beta,mu,delta)

% INPUT: Fi - EDF from obtained from observation data

% The NIG parameters - alpha, beta, mu and delta

% OUTPUT: Xi - The x values evaluating the NIG CDF estimation
% determined from spline interpolation

X
N

=25:0.001::25;
length(x);

1}

pdfHandle = @(x) nigpdf(x,alpha,beta,mu,delta);
F(1) = quadgk(pdfHandle,-inf,x(1));

for k =2 : N
F(k) = F(k-1) + quadgk(pdfHandle,x(k-1),x(k));
if mod(k,1000) ==
fprintf (’%d\t/d\n’ ,k,N);
end
end

[F,indx] = unique(F);
x = x(indx);
clear indx;

indx = find(isnan(F)==1); F(indx)
clear indx;
indx = find(isinf (F)==1); F(indx)
clear indx;

[1; x(indx) = [J;

[1; x(indx) = [1;
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Xi = interpi(F,x,Fi, spline’,NaN);

Calculating NIG parameters using Expectation-Maximization code as described in ALGO-
RITHM 3.1:

%NIG Parameter Estimation by Expectation-Maximization
%Following Karlis (2002)
#Written by Adam DeMarco: 1/15/2017

function [alpha, beta, mu, delta, zeta, chi] = nigpar_EM(x,alpha,beta,mu,delta)

% INPUT: alpha, beta, mu, delta obtained from MME, x is increment series
% OUTPUT: NIG parameters estimated using Expectation-Maximization

n = length(x);
Lold = -Inf;

for k = 1:1076

e
phi = 1 + ((x-mu)/delta)."2;

Ti = (delta/alpha)*sqrt(phi);

T2 = besselk(0, (delta*alpha*(phi.~(1/2)) ))./besselk(1,
(delta*alpha*(phi.~(1/2)) ));

S = T1.x%T2;

T3 = (alpha/delta)*(1./sqrt(phi));

T4 = besselk(-2, (delta*xalpha#*(phi.~(1/2)) ))./besselk(-1,
(deltaxalpha*(phi.~(1/2)) ));
W = T3.%T4;

IMaximization Step—————=—mm—mm i m e e s S e S e s S s e S
M = mean(8);
Lam = 1/mean(W - 1/M);

delta = sqrt(Lam);

gamma = delta/M;

Num = sum(x.*W) - mean(x)*sum(W);
Den = n - mean(S)*sum(W);

beta = Num/Den;

mu = mean(x) - beta*mean(S);

alpha = sqrt(gamma”2 + beta~2);
zeta = (1 + deltaxsqrt(alpha”2 - beta"2))"(-1/2);
chi = betaxzeta/alpha;

%Compute Log-Likelihood-——-—————————======—— === ————— oo oooom o
Ti = -nxlog(pi);
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T2 = n*log(alpha);

T3 = nx(delta*gamma - beta*mu);

T4 = -0.5*sum(log(phi));

T5 = beta*sum(x) ;

T6 = sum(besselk(l, (delta*alpha*(phi.~(1/2)) )));
L = (T1+4T2+T3+T4+T5+T6); %Log-Likelihood function

if abs((L-Lold)*100/Lold) < 1le-5
fprintf(’%s%d\n’, 'Number of Iterations:’,k);

break;
else

Lold = L;
fprintf O’ %d\t%hEf\t%E\t%f\t%£f\t%f\n’ ,k,alpha,beta,mu,delta,L);
end

end

A.2 Generalized Hyperbolic Skewed Student t’s Distribution
(GHSST)

Estimating GHSST parameters using MLE from Eq. 3.6 assuming 3 = 0:

%Maximum Likelihood Estimation (MLE) of NIG parameters
%Written by Adam DeMarco: 1/30/2017

function [nu, beta, mu, delta] = ghsstpar_mle(x,nu,beta,mu,delta)
% Inputs: the increment series (x), nu, beta, mu, and delta obtained

% sample moments.
% Outputs: nu, beta, mu, and delta estimated using MLE

1b = [0,-Inf,-Inf,0];
ub = [Inf,Inf,Inf,Inf];

if isnan(nu) == 0 & isnan(beta) == 0 & isnan(mu) == 0 & isnan(delta) ==
%TolFun: Termination tolerance for the objective function value.
%TolX: Termination tolerance for the parameters.
options = statset(’MaxIter’,1000, ’MaxFunEvals’,1000,...
’TolFun’,1e-20, ’TolX’,1e-20, ’Display’,’final’);

start = [nu,beta,mu,delta];

[phat,pci] = mle(x,’ pdf’,@ghsstpdf,’start’,start,...
’lower’,1b, ’upper’,ub,’options’,options, ’optimFun’,’fminsearch’);
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nu = phat(1);
beta = phat(2);
mu = phat(3);

delta = phat(4);

else
nu = Nal;
beta = Nal;
mu = Nal;
delta = NaN;
end

Calculating pdf of GHSST using model parameters:

YPDF of Generalized Hyperbolic Skew Student’s t-Distribution (GHSST)
#Written by Adam DeMarco: 1/30/2017

function pdf = ghsstpdf(x,nu,beta,mu,delta)

% Inputs: set of values from increments to be evaluated (x)
% nu, beta, mu, and delta from Maximum Likelihood estimations
% Output: pdf of GHSST

YReference: Aas and Haff (2006; Journal of Fimancial Econometrics)
YNOTE: Aas and Haff has a typo in Bessel function (negative sign was
Ymissing); I can verify it i 2 ways: (a) compare with Eq. (3) of their
%paper and (b) Eq. (9.46) of Paolella’s paper.

if isnan(nu) == 0 & isnan(beta) == 0 & isman(mu) == 0 & isnan(delta) ==

T1 = 2°((1-nu)/2) * (delta"nu) * ((abs(beta))” ((nu+1)/2));
T2 = besselk(-(nu+1)/2,sqrt(beta~2*(delta"2 + (x-mu)."2)));
T3 = exp(betax(x-mu));

T4 = gamma(nu/2)*sqrt(pi);

T6 = (sqrt(delta"2 + (x-mu)."2))."((nu+1)/2);

pdf = (T1.%T2.%T3)./(T4.xT5);
else

pdf = NaN*x;
end

Calculating cdf of GHSST using model parameters:

%Cumulative Distribution Function generation of GHSST
%Written by Adam DeMarco: 12/20/2016
%This code is based on a code from FileExchange

function F = ghsstcdf (x,nu,beta,mu,delta)
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% Inputs: the increment series (x), nu, beta, mu, and delta obtained MLE
% Output: CDF of GHSST using integration (F)

N
F

length(x);
zeros(N,1);

pdfHandle = @(x) ghsstpdf (x,nu,beta,mu,delta);

if beta>0

F(1) = quadgk(pdfHandle,-inf,x(1));
elseif beta<=0

F(1) = quadgk(pdfHandle,-100,x(1));
end

for k=2 : N
F(k) = F(k-1) + quadgk(pdfHandle,x(k-1),x(k));
if mod(k,1000) == 0
fprintf (*%d\t%d\n’ ,k,N);
end
end

A.3 Variance Gamma (VG)

Estimating VG parameters using MME from sample moments, see Eq. 3.9:

%Method of Moments Estimation of Parameters for VG Distribution
%Written by Adam DeMarco: 1/24/2017

function [alpha, beta, mu, lambda] = vgpar(mi,m2,m3,m4)
%Inputs:

%ml = sample mean

%m2 = sample stdev

%m3 = sample skewness

%m4 = sample kurtosis;

%NOTE: These are "approximate" estimates. They are useful as a
%starting condition for MLE.

%0utput:
%Method of Moment estimation of alpha, beta, mu, lambda parameters for VG

%I used Paolella’s chapter and Seneta (2004). NOTE: They use different
%notations.

m2s = m2°2; %Stdev -> Variance
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méx =m4 - 3; YFlatness
lambda = 3/(méx);

psi 2xlambda/m2s;

theta = sqrt(m2s)#*m3+*lambda/3;
beta m3xlambda/ (3*sqrt(m2s)) ;

alpha = sqrt(psi + beta”2);

mu ml - theta;

Estimating VG parameters using MLE from MME:

%Maximum Likelihood Estimation (MLE) of VG parameters
YWritten by Adam DeMarco: 1/27/2017

function [alpha, beta, mu, lambda] = vgpar_mle(x,alpha,beta,mu,lambda)
% Inputs: the increment series (x), alpha, beta, mu, and lambda obtained

% Method of Moments.
% Outputs: alpha, beta, mu, and lambda estimated using MLE

1b = [0,-Inf,-Inf,0];
ub = [Inf,Inf,Inf,Inf];
if isnan(alpha) == 0 & isnan(beta) == 0 & isnan(mu) == 0 & isnan(lambda) ==

%TolFun: Termination tolerance for the objective function value.
%TolX: Termination tolerance for the parameters.

options = statset(’MaxIter’,1000, ’MaxFunEvals’,1000,...
’TolFun’,1e-20,’TolX’,1e-20, ’Display’,’final’);

start = [alpha,beta,mu,lambda];

[phat,pci] = mle(x,’pdf’,@vgpdf,’start’,start,...
’lower’,1lb, ’upper’,ub,’Options’,options,’optimFun’,’fminsearch’);

alpha = phat(1);
beta = phat(2);
mu phat (3);
lambda= phat(4);

[}

else
alpha = NaN;
beta = Nal;
mu = Nal;
lambda= NaN;
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end

Calculating pdf of VG using model parameters:

%Probability Distribution Function (PDF) of VG
%Written by Adam DeMarco: 1/27/2017

function pdf = vgpdf (x,alpha,beta,mu,lambda)

% Inputs: set of values from increments to be evaluated (x)

% alpha, beta, mu, and delta from Maximum Likelihood estimations

% Output: pdf of NIG

% Reference: Scott et al. (2011) Moments of the generalized hyperbolic distribution
% Computational Statistics

if isnan(alpha) == 0 & isnan(beta) == 0 & isnan(mu) == O & isnan(lambda) ==
Ti = 2*((alpha”2 - beta”2)/2) “lambda;
T2 = sqrt(2*pi)*gamma(lambda) ;
T3 = (abs(x-mu)/alpha) .~ (lambda-0.5);
T4 = besselk(lambda-0.5, (alphaxabs(x-mu)));
T5 = exp(beta*(x-mu));

pdf = (T1./T2).%T3.xT4.%T5;

else
pdf = NaN*x;
end

Calculating cdf of VG using model parameters:

%Cumulative Distribution Function generation of VG
%Written by Adam DeMarco: 1/24/2017
%This code is based on a code from FileExchange

function F = vgecdf (x,alpha,beta,mu,lambda)

% Inputs: the increment series (x), alpha, beta, mu, and lambda obtained MLE
% Output: CDF of VG using integration (F)

N
F

length(x) ;
zeros(N,1);

pdfHandle = @(x) vgpdf (x,alpha,beta,mu,lambda);

if beta>0

F(1) = quadgk(pdfHandle,-inf,x(1));
elseif beta<=0

F(1) = quadgk(pdfHandle,-100,x(1));
end
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for k =2 : N
F(kx) = F(k-1) + quadgk(pdfHandle,x(k-1),x(k));
if mod(k,1000) ==
fprintf (’%d\t¥d\n’ ,k,N);
end
end

A.4 Lognormal Superstatistics (LNSS)

Calculating pdf of LNSS using MME obtained from Eq. 3.11:

%This code generates LN superstatistics pdf using Eq. (15) of Beck (2004)
%Written by Adam DeMarco: 12/20/2016

function p = LN_Superstatistics(du_range,s,mu)

% Inputs:

% du_range=the histogram binned range of the increments

% mu and s are the two parameters describing the distribution

% Output: PDF of LNSS

N=length(du_range);

for k = 1:length(du_range)

B = [1e-3:1e-3:1e3];

Y = (1/(2*pi*s))*(B."(-1/2)) .*xexp(- (log(B/mu))."2 / (2*s72))
.*exp (-1/2*B+du_range (k) "2) ;

p(k) = trapz(B,Y);

if mod(k,100)==0

fprintf (?%d\t%d\n’ ,k,N);

end

end

A.5 Hill Estimator

Calculating Hill plots which depict the tail-index for a given distribution, Eq. 3.18:

%Hill Estimator
%Written by Adam DeMarco: 12/23/2016

function [muH] = Hill_Estimator(X,Kmax)
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%»Input: X = Increment series, Kmax = sample fraction typically 3000
%Note: Kmax >= 2

Indx = find(isnan(X) == 1); X(Indx) = [];
Xs = sort(X, ’descend’);

denl = cumsum(log(Xs(1l:Kmax-1)));

den2 = ([2:Kmax]’ - 1).*log(Xs(2:Kmax));
den = denl-den2;

num = [1:Kmax-1].7;

muH = num./den;

A.6 Probability of Exceedance

Calculating exceedance probability for a range of o (standard deviations) from 1-10 for the left
and right tails for a given increment series:

function [Fx,Fy] = ComputeExceedance(x,F)
%Written by Adam DeMarco: 6/13/2017
% INPUT: x: the values for which the empirical cdf (F) was evaluated.

% F: the vector of values of the empirical cdf.

% OUPUT: Fx: the exceedance probability of ramp-up or right tail in %
% Fy: the same as Fx, except for ramp-down or left tail.

yl = [1:10]; y2 = [-1:-1:-10];

Fx zeros(size(y1));
for i = 1:numel(y1l)
Indx = find(x>y1(i));
if numel (Indx) >= 1
Fx(i) = (1-F(Indx(1)))*100;
else
Fx(i) = NaN;
end
end

Fy = zeros(size(y2));
for i = 1:numel(y2)
Indx = find(x<y2(i));
if numel(Indx) >= 1
Fy(i) = F(Indx(end))*100;
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else
Fy(i) = NaN;
end
end

A.7 Anderson-Darling Test Statistic

Integral form of the Anderson-Darling statistic as shown in Eq. 5.3:

function [AD,N] = AndersonDarlingIntegral(x,Fn,F)

% Written by: Adam DeMarco: 4/15/2017

% INPUT

% Fn = empirical distribution function (EDF)

% F = theoretical cumulative distribution function (CDF)

% x = the value which the EDF was evaluated

% QUTPUT

% AD = Anderson Darling statistics

% N = length of x

% Luceno 2006 - Fitting the GP distribution to data using maximum GOF estimators

Ti = (Fn - F)."2;
T2 = F.*(1-F);

T = T1./T2;

N = length(x);

AD = Nxtrapz(x,T);
clear T1 T2

Integral form of the Anderson-Darling statistic, separately evaluating the left and right tails as
shown in Eq. 8.1:

function [ADL,ADR,N] = AndersonDarlingIntegral_tails(x,Fn,F)

% Written by: Adam DeMarco: 5/28/17

% Fn is the EDF

% F is the true CDF

% ADL - Anderson-Darling Left tail

% ADR - Anderson-Darling Right tail

% Luceno 2006 - Fitting the GP distribution to data using maximum GOF estimators

T1 = (Fn - F)."2;

T2 = (1-F);
T = T1./T2:
N = length(x);
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ADR = N¥trapz(x,T);

clear T1 T2 T

T1 = (Fn - F)."2;
T2 = F;
T =T1./T2;

ADL = N*trapz(x,T);
clear T1 T2 T

Two-sample Anderson-Darling statistic, taking the “ties” into consideration, which are a direct
result of discrete parent populations from ([220], Eq. 6), see Eq. 10.5:

function [AD] = adtest2_ties(X,Y)

%2-sample Anderson Darling test statistic

%Takes into account the issue of "ties" (i.e., duplicate CDF values)
#Written by: Adam DeMarco: 6/30/2017

“#Based on Eq. (6) of Scholz and Stephens (1987)

% INPUT:

% X and Y are the two increment series for comparsion

% OUTPUT:

% AD is the 2-sample Anderson Darling test statistic

[NR,NC] = size(X); if NC > 1; X = X’; end;

[NR,NC] = size(Y); if NC > 1; Y = Y’; end;

nl = length(X); n2 = length(Y); N = nl + n2;

Z = [X;¥];

Zs = unique(Z); %Automatically sorts in ascending order
f1 = hist(X,Zs); M1 = cumsum(f1);

f2 = hist(Y,Zs); M2 = cumsum(f2);

1 = hist(Z,Zs); B = cumsum(1);

%These terms are computed for j = 1:L-1
den = B.*(N-B); den(end) = [];

numl = 1.*(N*M1 - ni*B)."2; numi(end)
num?2 = 1.*(N*M2 - n2%B)."2; num2(end)

;
I35

T1 = 1/(n1*N)*sum(numi./den);
T2 = 1/(n2#N)*sum(num?2./den);
AD = T1+4T2;
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