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ABSTRACT  

The major unknown in the global climate radiation balance calculations is the effect of aerosols. The extinction of 
aerosols depends upon the wavelength, size, concentration, composition, and to a lesser extent, shape of the aerosols. 
Thus, methods are needed to determine and model these quantities. The size distribution of larger aerosols can be 
monitored with multistatic lidar, at least in the spherical approximation. We can use this approximation in humid 
environments, and for old desert dusts in which the aspect ratio is typically below two. Aerosols that are small compared 
to the incident wavelength present a Rayleigh-like scattering dependence, and the size cannot be determined using 
multistatic lidar techniques. We discuss the analysis of true extinction from Raman lidar measurements at several 
wavelengths for determining the size distribution of aerosols. The Angstrom ratio, which is the natural log of the 
extinction ratio divided by the natural log of the wavelength ratio, has been used in column-integrated measurements to 
classify aerosols. Lidar backscatter Angstrom ratio measurements have also been used to classify aerosols as a function 
of range. However, the use for aerosol size distribution has not been investigated in detail before this work. We find, 
from Raman lidar measurements, Mie models of extinction and backscatter Angstrom ratios, that small aerosols make a 
significant contribution to optical scattering, and find that size information can be extracted from the lidar data.  
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1. INTRODUCTION  
Aerosol properties are important for understanding effects on human health, visibility, and climate forcing [1–7]. Several 
methods have been developed to measure aerosol properties. Most of these techniques are point-measurements, in which 
an instrument has to be present in or adjacent to the measurement volume. We discuss here the remote sensing 
techniques for aerosol particles; in particular, we want to determine their concentration and size distribution [8], 
although some efforts have been aimed at remote sensing of composition [9]. Remote aerosol active sensing methods are 
usually optical-based lidar or path integrated signal from a target, and mostly rely on optical extinction measurements. 
Passive systems use direct or reflected sunlight, or path-integrated extinction between a transmitter and a detector; these 
techniques often use several wavelengths to obtain information about the aerosol size distribution. Passive satellite 
measurements (such as MODIS) obtain worldwide coverage, but at the expense of poor time resolution at a location (1-2 
days), and relatively coarse vertical resolution near the surface [10–12]. Profiling can only be obtained by analysis at 
several viewing angles and assumptions about uniformity of the spatial distributions. Active systems can operate either 
in the path integrated or path profile (lidar) mode, either from orbit (CALIPSO) or from the ground [13–19]. The number 
of wavelengths used in active systems is usually very small, so less information about the aerosol size distributions can 
be obtained. We have pursued methods involving bistatic and multistatic lidar [16,20–25] to measure the angular 
scattering to obtain more information. Using these techniques, we are able to extract distribution properties using 
parameters from trimodal and lognormal distributions measured remotely. In particular, we found that the ratio of the 
scattering phase function at the two polarizations can be used to eliminate many of the instrumentation complexities and 
permit robust measurements [16,20,22–24,26]. The fact that a ratio is used would naively imply that the total scattering, 
or number of aerosols, would not be obtainable. This is not true, since molecular scattering is also measured, and the 
known atmospheric molecular density allows a useful quantification of the number of aerosols in the same dataset 
[27,28]. Multistatic methods fail when the particles are small (in the Raleigh range) compared to the lidar wavelengths. 
In this case, the scattering angular distribution is that of a dipole, and other methods are needed: the subject of this paper. 

We define small aerosols as those for which the angular dependence of scattering is without resonant features, therefore 
the earlier developments of our multistatic lidar techniques do not apply to them. Figure 1 shows a Mie calculation [8] of 
several aerosol diameters as a function of angle. It is observed that the size will be very difficult to obtain, without using 
other factors, for particle diameters below about half of the incident lidar wavelength. Particle diameter/wavelength can 
provide useful scaling to extrapolate to other lasers from the limit of any observable change at λ=532 nm of d~150 nm. 
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Figure 4. The Angstrom coefficient of extinction from water spheres illuminated by light of different wavelengths is 
calculated using the Mie formalism. For particles with a size too large for the Rayleigh description to be valid even at the 
shorter wavelengths used, but smaller than a factor >~1 times the longer wavelength used, the Angstrom coefficient 
monotonically decreases with particle diameter, thus, that diameter can be determined by this coefficient. Note the 

similarities between this figure with linear vertical axis 
and Fig. 3(a) with logarithmic vertical axis. 

We next show some measured lidar data that 
indicates that the small aerosols for which this 
technique is applicable are, in fact, present and 
important in the atmosphere. Figure 5 shows Raman 
lidar data. In Fig. 5(a), extinction vs. altitude data 
from the NEOPS study near Philadelphia, PA at three 
different wavelengths shows that, over a wide altitude 
range above the boundary layer ~1 km, the ratio of 
the 284 nm extinction to the 530 nm extinction is 
about a factor of 12, or the frequency ratio to the 
fourth power. This indicates that very small particles, 
within the Rayleigh range for both wavelengths, 
dominate the extinction to 3 km and probably above. 
At lower altitudes, the ratio drops to a much lower 
value, in the region of larger boundary layer aerosols. 
Such behavior is expected, since larger aerosol 
growth will occur primarily in the boundary layer. 
Other data from Hesperia, CA, Fig. 5(b), also show 
small particles aloft, and the extinction ratio from 
about 1.5 - 4 km altitude is ~10. The results in Fig. 
3(a) show that the particle diameters are ~100 nm. 
The aerosols almost certainly have a broader size 
distribution, and later we will discuss this effect in the 
size estimates. To compare to the figure, we make use 
of the fact that the curves in Fig. 3(a) scale with the 
wavelength ratio to the fourth power for small 
aerosols. Thus, we multiply the measurement by a 
correction factor of [532/266*284/530]4 = 1.3 before 
comparison. Figure. 5(b) also shows larger aerosols 
near the surface, and two cloud layers above 4 km 
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found in measurements in Hesperia, CA [15] within a broad 
altitude range of ~1.5-4 km. The particles are within the 
range of size sensitivity of the technique. At higher altitudes, 
multiple scattering in a cloud whitens the scattering and thus 
extinction, while larger particles are present near the surface. 
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that have a sufficiently high density of larger aerosol particles to cause multiple scattering, which whitens the scattering 
and hence increases extinction over the full range of wavelengths. 

Aerosol spatial distributions can be acquired with a vertical-pointed Raman lidar system, with altitude resolution 
provided by the lidar ranging and horizontal information from the flow of the atmosphere past the unit. We 
simultaneously measure water vapor, ozone and temperature in addition to the extinction at several wavelengths. UV 
extinction measurements have been corrected for the ozone absorption measured in this wavelength range. Figure 6 
shows a pair of extinction profiles as a function of time. A comparison reveals a lower layer, 1-2 km in altitude (the site 
is at 1.2 km elevation) on the right half of the image that exhibits a much stronger extinction at the shorter wavelength, 
indicating smaller particles present in the sensitivity range of this technique. The ratio of ~3.5 would give a diameter 
estimate of 0.3 micron from the Fig. 3(a) numbers, corrected for the wavelengths used. Another feature at ~3.4 km in 
altitude has a higher extinction at the longer wavelength near the center of the images, but about equal extinctions at the 
very left. This indicates larger particles, larger than the sensitive range of the technique, although multistatic techniques 
should be able to size them.  Between these two layers, the ratio is large, suggesting small particles. 

(a)  (b)  

Figure 6. Extinction vs. time and altitude in Hesperia, CA is measured by a vertical Raman lidar system. (a) 284 nm, (b) 530 
nm [44]. The vertical line in (a) marks the beginning of daylight and end of the part (b) data. 

Figure 7 shows measurements on the next night (these data start about midnight local time), the situation was a little 
different. There is no cloud precursor at higher altitudes, and the aerosols at ~1.5 km are a little larger. There still is a 
region of a high concentration of small aerosols up to 3.5 km, particularly during the first two hours of the measurement. 

(a)  (b)  

Figure 7. Extinction vs. time and altitude in Hesperia, CA is measured by a vertical Raman lidar system. (a) 284 nm, (b) 530 
nm. [44] 
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Real aerosols in the atmosphere are not mono-dispersed, but are found in distributions often modeled as lognormal 
distributions as discussed above. We consider a single lognormal distribution of small aerosols and investigate the 
impact of the distribution on the applicability of a simple technique such as indicated in Fig. 3(a). To begin, we follow a 
procedure similar to that used for Fig. 3, but rather than change the size of a single particle, we change the median of a 
distribution. The lognormal distribution parameters we choose are similar to those we have measured for small aerosols 
before. These parameters and results will be shown after we review the lognormal distribution itself. 

 

The normalized lognormal distribution is characterized by two parameters, the position parameter, μ, and the width 
parameter, σ. We use a slightly different definition of the position parameter than the most common definition since we 
do not like having units in the logarithm function, and both the position parameter and the size axis have units of length, 
which need to cancel inside. We thus use a scaling factor, N, for the number of aerosols per volume, 

ሻݔሺ݉ݎ݋݊݃݋݈  = ே௫ఙ√ଶగ 	݌ݔ݁ ൭−0.5 ቆ௟௡	ቀഋೣቁఙ ቇଶ൱. (1) 

This has mean ݌ݔ݁ߤ	ሺ0.5ߪଶሻ, mode ݌ݔ݁ߤ	ሺ−ߪଶሻ, and median μ. In the study that follows, we vary the median (position 
parameter) and fix the width parameter at 0.4. The number density cancels in the ratios, so its value is moot. Figure 8(a) 
shows the two lognormal distributions (normalized for one particle) at the ends of the range used in Fig. 8(b). The latter 
figure is the equivalent, with a size distribution rather than a single particle size, to Fig 3(a). The general tendencies are 
the same, but the value at the lower end of the size range is smaller, and the functions drop to ~1 (the end of the range of 
sensitivity) at smaller sizes. These effects are expected, since the distribution represents a weighted average of the data 
in Fig. 3(a). Since the curves decrease, averaging reduces the values on the left. Further, the width of the distribution 
implies that larger particles are present. The sensitivity is expected to be lost when a sufficient weight of the larger 
particles is beyond the wavelength, or out of range in Fig. 3(a). As the median increases, so does the width for fixed 
width parameter, so many particles are larger than the median. On the small particle end, nucleation mode distributions 
such as the first one used, Fig. 8(a), are in the sensitive region, Fig. 8(b). 

(a)  (b)  

Figure 8. The impact of a lognormal aerosol distribution (here) instead of mono-dispersed aerosols (Fig. 3(a)) is considered; 
(a) the smallest and largest median lognormal distributions used. They are normalized to one particle each and both have the 
same 0.4 width parameter, while the medians are 0.03 and 2.0. (b) The qualitative aspects of the mono-size distribution are 
retained, although the scaling and sensitive size regime is reduced. The extinction parameter kext is the weighted average of 
Cext*(Number Density) over the size distribution, not including any molecular contribution. 

 

 The obvious question to ask is whether the distribution properties can be extracted from these ratios. There are two 
parameters that should be extractable from the ratios in the absence of molecular contribution. Likely, all three, 
including number density, can be identified in the presence of the molecular scattering, as was possible in the multi-
static case discussed above. We need an equal or greater number of observations than parameters to extract, so the ratio 
at several wavelength pairs will be required -- essentially we will need extinction measurements at 3-4 wavelengths that 
are far enough apart to give independent values. A complete study of this is beyond the scope of this paper and will be 
addressed in future work.  
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To further motivate the applicability for using this approach to determine the size distributions, we now discuss a study 
for which extinction was measured at several wavelengths through a test chamber that had controlled injection of desert 
dust with simultaneous aerosol size distribution measurement. The extinction measurements used in the Fig. 9 
calculations were described before [45]. We can analyze these data from two directions: (1) the extinction measurements 
can be used to directly extract the ratios of the extinction coefficients kext, and (2) the size distributions can be input into 
Mie calculations with measured indices of refraction for the particles [46]. The determination of measured indices 
avoided scattering and index of refraction variation artifacts (see reference [46]). The same quantities are obtained from 
each approach, and we can evaluate consistency. The consistency we find supports the idea of future efforts to determine 
the distributions from extinction measurements at several wavelengths, which will be especially useful for small 
particles in the nucleation mode whose distributions cannot be determined with established remote sensing methods. 

The extinction measurements are acquired before, during, and after injecting dust to create the aerosols. As soon as the 
dust is in the air, the larger particles will start to settle, so we seek to find the values shortly after injection when they are 
closest to lognormal functions, which is what we model. The kext is determined from the logarithm of the signal decrease 
due to the dust, scaled by the chamber length and units conversions. Plots of the extinction coefficient values for 100 
seconds after injection of dust are shown in Fig. 9 for three wavelengths. The steady value after the rise (injection) is 
taken as the kext for comparison. Note the change afterwards, likely due to the loss of larger particles. 

   
Figure 9. The extracted extinction coefficient ratios relative to that of 1.064 micron wavelength: (a) 532 nm wavelength 
gives 0.6, (b) 9.6 microns gives ~2, and (c) 10.6 microns gives ~11. 

 
The measured distributions were least-squares fit to a single lognormal distribution. Median values were close to 1.16 
microns and width parameters near 0.4. The number varied, but will cancel in the ratio calculation. The biggest 
discrepancy in the fit occurred above 2 microns; where the measured values always fell below the lognormal prediction, 
presumably due to settling. To compensate for this, we did not model particles larger than 2.5 microns in diameter. 
These distributions of nominal 0-3 micron diameter dust, contained particles large enough that calculations involving 
266, 355, and 532 nm wavelengths all had ratios near 1, so out of the range of sensitivity, Figs. 8(b) and 9(a). We thus 
used ratios against 1.024 microns, and the other measured wavelengths of 9.6 and 10.6 microns. The predicted ratios 
using the distributions and n+ik of 1.45+0.003i, 1.75+0.9i, and 1.67+0.25i for 1.064, 9.6, and 10.6 micron wavelengths, 
respectively, gave ratios kext 9.6/kext 1.064 = 3.7 (2 from Fig. 9) and kext 10.6/kext 1.064 = 13.1 (11 from Fig. 9). The 
agreement is reasonable, suggesting the robustness of the method. 
 
In summary, we present an approach to determine the size of small aerosols via Raman-lidar-measured extinction ratios 
at several wavelengths. Mie modeling, and the presence and importance of such small aerosols identified with existing 
Raman lidar data, supported the choice of this measurement technique and analysis method. The effects of particle 
distributions were considered using Mie calculations and closure obtained from measurements of extinction at several 
wavelengths in conjunction with aerosol size distributions. One of the exciting results is the expectation that this 
approach can be extended to the nucleation mode size distribution. 
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