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Abstract 

 

Estimation of the depth of the various layers in the Atmospheric Boundary Layer 

(ABL) is of interest to the meteorological, air quality and aeronautical community.  

While previously published literature on this topic concentrated on using wavelet 

techniques applied to wind profiler or lidar backscatter data, a case is presented  for using 

Raman lidar to describe the ABL depth. The techniques introduced in this thesis 

complement, as well as offer an alternative to the existing technique of ABL depth 

estimation using wavelet techniques. The image processing techniques introduced in this 

thesis demonstrate a capability to detect as well as follow gradients in the ABL time 

series, to obtain the time series of atmospheric layer boundaries. The algorithm performs 

edge detection and then uses dynamic programming techniques to perform edge 

following. The 2-D spatial filters are used for edge detection. These filters utilize 

information of the current and neighboring profiles to estimate gradients in the current 

profile. This additional information compared to the 1-D wavelet technique yields a 

robust gradient detection scheme. The edge following algorithm can also be used with the 

wavelet technique mentioned in the published literature to obtain a time series of the 

boundaries between the various layers in the atmosphere.  Examples are described 

showing the traces of multiple layers in the atmosphere with the new technique, which is 

now available for routine data processing. 
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Chapter 1 

The Atmospheric Boundary Layer 

 
1.1 Introduction 

This chapter introduces the Atmospheric Boundary Layer (ABL) and describes its 

growth/decay. Initially, we will draw on the subject of turbulent flow and boundary layer 

fluid mechanics to discuss the applicability of these concepts to the layer of atmosphere 

between the ground to the free troposphere. The influence of the diurnal variation of the 

solar flux on the Earth’s surface will be described because it drives the dynamic 

processes in the ABL [1]. The role of water vapor as a tracer of the boundary layer 

dynamics will be the underlying theme of this discussion. Having described the 

atmospheric layer dynamics, the applications of the ABL and its depth will be discussed. 

This approach is deemed necessary to determine the choice of instruments used to probe 

the ABL. The techniques for estimating the ABL depth will be discussed in the following 

chapters.  

 

1.2 Boundary Layer – A Fluid Mechanics Background 

The term boundary layer arises from fluid mechanics [2]. Boundary Layer is an 

engineering term for the moving fluid layer adjacent to a solid body [3]. Both liquid and 

gases come under the category of fluids. While gases resist compression, liquids resist 

both tension and compression. While fluids do not resist shear, they resist the rate of 

shear, also known as viscosity. In fact, the definition of a fluid is often based on this 

property of resistance to rate of shear as a material that deforms continuously and 
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permanently under the application of a shearing stress, no matter how small. Viscosity is 

formally defined as the resistance to the rate of shear [4], 

Viscosity  = (Shear Stress) / (Shear Rate).               [1.1]  

 

Whenever a fluid flows over an immovable surface, the fluid immediately 

adjacent to the surface does not move (it has the same speed as the surface). This is also 

called the 'No-Slip' condition. Figure 1.1 gives a graphical depiction of the velocity of a 

fluid near a surface. The reason for the occurrence of the no-slip condition can be 

explained by examining a solid surface at a molecular scale. When a fluid is stationary, 

its molecules are in a constant state of motion with a random velocity, say v. When a 

fluid is in motion, there is superimposed on this random velocity a mean velocity, V, 

sometimes called the bulk velocity, which is the velocity at which fluid moves from one 

place to another parallel to the surface. At the interface between the fluid and the surface, 

there exists an interaction between the molecules or atoms that make up the fluid and 

those that make up the solid. The collision rate and surface roughness result in 

interactions that are strong enough to reduce the bulk velocity of the fluid to zero. So the 

bulk velocity of the fluid must change from whatever its value is far away from the solid 

surface to a value of zero at the surface resulting in the no-slip condition [2]. The no-slip 

condition requires a region of shearing. Viscosity thus plays a role in determining flow 

patterns. The velocity of the fluid increases as its distance above the surface increases. 

Studies have shown that the velocity increases parabolically as the distance from the 

surface increases. The convexity of the parabolic distribution depends on the speed of  
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Figure 1.1. Profile of 

 

tle resulting in a relatively great distance 

tmospheric Boundary Layer 

The ground serves as a solid surface and the circulating air above interacts with 

 a thin layer about 1/10th of troposphere 

resultin

Height 

fluid velocity near a surface.Velocity  

flow in the free flow regime. If a fluid is very resistant to rate of shear (high viscosity), 

the velocity gradients will tend to be gen

between the surface and free-stream and vice-versa. The thickness of the gradient region 

from the zero speed to the free-stream velocity is called the boundary layer. Due to the 

asymptotic nature of the distance at which the free stream velocity is reached, the 

boundary layer is often taken to be the height at which 99% of the free stream velocity is 

reached. This approximate boundary layer is also known as the Prandtl Boundary Layer 

[5]. 

 

1.3 A

this “motionless” ground creating friction in

g in a boundary layer. This boundary layer is a part of the troposphere (the first 

layer of the atmosphere above the ground surface). The Atmospheric Boundary Layer is 

defined as "the part of the troposphere that is directly influenced by the presence of 
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Earth's surface, and responds to surface forcings with a timescale of about an hour or 

less" [6]. The flow of wind and the surface friction create shearing forces while the 

diurnal variation of temperature creates a buoyancy force. Hence, the ABL experiences 

turbulence due to both mechanical forces and also thermal forces. In addition, the  ABL  

is  influenced by the coriolis force due to the Earth's rotation imposed on it. The effective 

transport of heat, momentum and pollutants is due to turbulence. Thus, the ABL is a 

turbulent region in a rotating heavily stratified layer [7]. The actual thickness varies from 

100's to a few 1000's of meters. The thickness of the ABL depends upon two processes 

which generate turbulence, surface wind shear and excess buoyant convection is 

dissipated. The diurnal variation of temperature in the lower troposphere due to local 

heating of the surface  is minimized in the free atmosphere. 

 

1.4 Diurnal Variation of the ABL 

presentation of the growth of the ABL [6]. From the 

figure, 

.5 Surface Layer 

Figure 1.2 shows a pictoral re

we observe that the boundary layer structure over land has 4 major components 

that change over the diurnal cycle. They are the “convective boundary layer” (CBL or the 

mixed layer), the “residual layer”, the “nocturnal boundary layer” or the “stable boundary 

layer”, and the “surface layer”. In the presence of clouds, the residual layer can be further 

subdivided into cloud layer and sub-cloud layer. 

 

 

 

1

 



 14

The surface layer is the lowest region of the boundary layer where the turbulent 

fluxes and stresses vary by less than 10% of their magnitude [6]. During day, this layer is 

superadiabatic and statically unstable (potential temperature and water vapor decreasing 

with altitude and presence of strong wind shear). At night, due to absence of heating it 

can be statically stable when the surface is cooler than the overlying atmosphere. In this 

layer we might observe small scale structures such as buoyant vertical plumes and even 

dust devils. The moisture content of this layer is dependent on the recent history.  The 

wind  profile shows a logarithmic increase with height in the surface layer. But, the wind 

on the surface of the earth is close to zero due to the surface friction. 

 

 

 

igure 1.2. Diurnal variation of the boundary layer [6].  

.6 Convective Boundary Layer  

F

 

 

1
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The convective boundary layer is the turbulent portion of the atmosphere. It can 

be div

e 

enerated turbulence can be described based on the solar radiation 

balance

 transfer of 

heat fr

ided into three parts, the surface layer (discussed earlier), the mixed layer 

(comprising the middle 35 to 80%) and the entrainment zone (the top 10% to 60%) [6].  

The mixed layer is so called due to the intense mixing in this layer which can b

generated mechanically by wind shear or convectively by buoyancy. Of these two 

sources of mixing, buoyancy gives more uniformity in the vertical distribution. A 

uniform mixing results in variables like potential temperature and specific humidity 

having almost constant values over the vertical extant of the mixed layer. The non-

instantaneous nature of the mixing process, the entrainment of warm air from the free 

troposphere, and heating from the warm ground contribute to the deviation of these scalar 

from a constant value. 

The buoyancy g

 depicted in Figure 1.3 .  The prime source of heat in the atmosphere is the solar 

radiation which is about 344 W/m2 per day on the average. A major portion of this 

radiation (51%) is absorbed by the ground. About 30% of the radiation is reflected by the 

atmosphere to the sky, termed as albedo [8, 9]. The remainder is absorbed by the clouds 

and other constituents in the atmosphere such as water vapor, ozone, dust etc. 

Fluids transfer heat most effectively by convection. Convection is the

om one location to another by the ensemble mass motion of the fluid. Hot air 

masses tend to rise and are replaced by surrounding cooler, more dense air. When air in 

contact with the surface is heated relative to the  cold air overlaying it, the water vapor 

produced by evaporation at the surface is carried vertically by vigorous convection. As 

water vapor absorbs radiation, it affects the radiative balance. The final equilibrium 
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depends on the balance between the radiative and convective effects and is called 

radiative-convective equilibrium [7]. 

Figure 1.3. Radiation balance for the atmosphere. (From “Understanding Climate  
 Change”, U.S National Academy of Sciences, Washington, D.C., Figure 1.6 [10]). 

Convection is controlled by the rate of decrease of temperature with height also 

called 

p(z) = 

 

as the "lapse rate". In fact, convection occurs only when lapse rate exceeds a 

certain value. The pressure profile in the atmosphere decreases exponentially and is given 

by,  

)exp(0 RT
gzp −

          [1.1] 

where  p0 = G
     g = Acceleration due to gravity = 9.8 m/s2, 
    ant = 8.314 J/mol.K,   

iabatically, i.e without 

exchanging heat in air outside the parcel. As the parcel ascends to a region where the 

round pressure, 

 R = universal gas const
     T = actual temperature in Kelvin, and 
     z = altitude variable. 
 

Consider a parcel of air that moves up and down ad
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pressur

for descending air. This follows from the 

fact that the amount of water vapor a parcel of air can hold increases as the parcel goes 

e is lower, the parcel of air becomes less dense and expands physically. The 

kinetic energy of the molecules decreases and hence the temperature decreases. This 

process, resulting in decreasing temperature due to expansion, is called the adiabatic 

lapse rate and has a value of  -9.8 K/km. If the lapse rate is smaller, the ascending parcel 

would be warmer and would keep moving upward under its own buoyancy. This unstable 

situation is the process of turbulent convection. Convection transfers heat upward to 

reduce the lapse rate till it acquires equilibrium and convection stops. The same idea can 

be expressed in terms of potential energy. Whenever the adiabatic lapse rate is lower  

than the lapse rate of surroundings, the potential energy can be reduced by moving 

parcels adiabatically to different levels (to conserve energy). The equilibrium of energy 

in the atmosphere is effected in a number of ways by the hydrological cycle in the 

atmosphere. Convection is also affected by the release of latent heat when moisture 

condenses to form clouds. The water holding capacity of a parcel of air ascending 

adiabatically decreases as it cools with height. Latent heat is released from the ascending 

air parcel saturated with water vapor. Above the region of condensation, the rate of 

decrease of temperature with height will approach dry adiabatic lapse rate. The rate of 

decrease of temperature with height in the lower troposphere is defined by the moist 

adiabatic lapse rate, and has a value that depends on specific humidity, temperature and 

pressure. For the lower atmosphere, the value is about 4°K/km at 20°C and 5°C/km at 

100C. The precise values are tabulated in [11]. 

While the moist adiabatic lapse rate is appropriate for describing upward rising 

air, the dry adiabatic lapse rate is appropriate 
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down a

in 

e well-mixed layer begins to decay due to the decay in the buoyant fluxes. 

 gets established with the same initial state variables and same 

concen

er  

nd so the parcel is always unsaturated. As water vapor is one of the components of 

buoyant convective motion, water vapor is a tracer for the growth/decay of the convective 

boundary layer. The daytime variations of mean virtual potential temperature, specific 

humidity and other scalars are shown in Figure 1.4. The potential temperature is defined 

as the temperature a parcel of dry air would have if brought adiabatically from its initial 

state to the standard pressure, selected arbitrarily to be the surface value of 1000 mbar. 

 

1.7 Residual  Layer  

About half an hour before sunset, the turbulence which was previously present 

th

Consequently, a layer

tration of variables as the previous layer. This layer has neutral stability [6]. 

Moisture accumulates each night in the residual layer after it has evaporated during the 

previous day and has been distributed in the mixed layer. The residual layer does not 

have direct contact with the ground. During the night, the stable nocturnal layer keeps 

increasing its thickness by modifying the bottom part of the residual layer. The stable 

layer (to be discussed below) prevents interaction between the surface and the residual 

layer. Thus the remainder of the residual layer is not affected by turbulent transport of 

surface related properties [6]. 

 

 

1.8 Nocturnal Boundary Lay
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This layer is characterized by stable air with weak thin layers of infrequent 

n is often seen at the top of this layer during calm 

nights. 

ight, the winds at higher 

altitude

ntal spreading out in thin layers) [6]. The top of  the 

nocturn

turbulence. Temperature inversio

These inversions are formed due to the surface cooling by infra-red emission. As a 

result, the ground becomes cooler faster than the air above and we find that the 

temperature increases with height in nocturnal boundary layer giving rise to an inversion 

layer (the temperature normally decreases with height in ABL). 

The wind profile should ideally exhibit a parabolic behavior due to a surface 

(ground). Whereas ground level winds are lighter and calmer at n

 may accelerate to super geostrophic speeds near the top of the nocturnal 

boundary layer. The geostrophic wind moves parallel to isobars and occurs above the 

ABL where the effect of surface friction is absent. Above the top of the nocturnal 

boundary layer, the wind speed and direction will have a smooth transition to geostrophic 

values. This layer of peak wind speed close to the top of the stable layer is called  low 

level jet (LLJ) or nocturnal jet [6].  The LLJ usually occurs netween 100 to 800m above 

the ground. The LLJ can have width spanning hundreds of kilometers and length of a 

thousand kilometers. Factors that contribute to LLJ include fronts, advective 

accelerations and sea breezes.  

Owing to the stability of the layer, the discharge of pollutants is horizontal and is 

also known as fanning (horizo

al boundary layer is poorly defined and blends into the overlying residual layer. It 

is defined by the presence of very low turbulence intensity compared to the surface value. 

The stable boundary layer is not restricted to night time only. When warm air advection 
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occurs over a cooler surface, such as after a warm air frontal passage or near shorelines, 

then also the stable boundary layer can occur. 

Typical vertical profiles of some scalars are shown in Figure 1.4. Due to the 

presence of an inversion at the top of the ABL, these scalars help us to estimate the depth 

of the ABL during daytime. The almost constant concentration of the water vapor mixing 

ratio in the mixed layer is due to the uniform mixing in the turbulent atmosphere during 

daytime. We also observe a strong gradient in potential temperature profile and a gradient 

in the water vapor mixing ratio profile at the top of the daytime boundary layer in the 

entrainment zone.  

 

 

Figure 1.4 Typical daytime variations of mean virtual potential temperature (θv), mean  
 horizontal wind speed (M , M = u2 + v2), water vapor mixing ratio, r, and 

.9 ABL Environment and Its Effects 

the environment, climate, vegetation, food and 

quality

            pollutant concentration, c [7]. 
 

1

The ABL properties determine 

 of air. Some of the many factors important in the ABL include: 
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1) The weather forecasts of dew, frost, temperature and wind speeds are boundary layer 

predictions. 

2) Pollution mixing and transport depends on the boundary layer dynamics and its 

evolution. In urban areas, the dispersal of surface generated pollutants and smog depend 

on the dynamics of the  atmospheric boundary layer. 

3) Design of structures to withstand wind gusts requires a study of turbulence. 

4) Agricultural meteorology and hydrology are concerned with the dry deposition of 

natural gases and pollutants on crops. The growth of crops is influenced by evaporation, 

dew and frost formation. The last three factors depend on the intensity of turbulence and 

energy balance at the surface [1].  

5) Aeronautical meteorology: Aircraft are affected by boundary layer meteorological 

phenomena such as low cloud, low-level jets, intense wind shear leading to high intensity 

turbulence, especially during landing and take off.  

 The aforementioned applications elaborated the role of the ABL in our daily life. 

The depth of the ABL is of particular interest because it serves as a key parameter for 

evaluation of Numerical Weather Prediction (NWP) models. Accurate estimation of the 

ABL depth will help provide better weather forecasts. It will also help us to characterize 

the flow of pollutants dispersed in the boundary layer which consequently affect human 

health.  

 

Summary 

The discussion in this chapter demonstrated that water vapor is a tracer of 

buoyancy and thermal effects in the atmosphere over the course of 24 hours in a day. As 
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seen from Figure 1.4, the water vapor mixing ratio exhibits a gradient at the top of the 

boundary layer which can be used as a marker of ABL height. 
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Chapter 2 
 

Instrumentation for Atmospheric Water Vapor Profiles 
 
 

Introduction 

From Chapter 1, we concluded that the altitude gradients of the water vapor 

content that follow the dynamical processes in the atmosphere could provide a technique 

for continuous monitoring of the thickness of the Atmospheric Boundary Layer (ABL). 

The thickness of the boundary layer may extend up to 3000 m. Hence, we need remote 

sensing instruments which can sense the gradients in the water vapor profiles, changes in 

aerosol distribution or changes in dynamical properties over a specified location. Two 

instruments, RADAR and LIDAR (Light Detection and Ranging) could provide these 

capabilities. Raman lidar techniques can give a direct measurement of the water vapor 

and aerosol distribution. Hence we introduce the Penn State University’s LAPS Lidar and 

its capabilities to measure water vapor profiles which can be used to develop an 

algorithm for ABL depth. The measurement of the atmospheric water vapor from lidar 

requires an understanding of Raman scattering and accordingly Section 2.1 will address 

this topic. The instrumentation of the LAPS Lidar system will then be described briefly in 

Section 2.2, and Section 2.3 will focus on the calculation of water vapor profiles from the 

lidar return signal.  

 

2.1 Raman Scattering  

If monochromatic radiation of a very narrow frequency band scatters from a 

molecule, then the molecule’s electron cloud will experience an increase in virtual energy 

equivalent to that of the scattering photon.  In most cases, the molecule returns to a 
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ground state and the energy of the scattered photon is very close to the energy of the 

incident photon, only slightly shifted by the Doppler velocity of the molecule. This is the 

classic Rayleigh scattering or elastic scattering case. However, it may happen that the 

molecule will gain or lose energy relative to the energy of the incident photon. The 

energy difference between the incident and scattered photons during Raman scattering is 

characterized by the addition or loss from a change in the rotational or vibrational energy 

states of the specific molecule. If the molecule gains energy, the scattered photon energy 

and hence the oscillating frequency of the photon will be reduced. This red-shifted 

radiation is referred to as Stokes’ radiation. On the other hand, if the molecule loses 

energy, the photon gains energy and consequently oscillates at higher frequency which is 

termed as blue-shifted or Anti-Stokes’ radiation. In the case of vibrational shifts, the 

intensity of the Stokes’ vibrational radiation is about 1000 times smaller  and anti-Stokes 

radiation is about 10 million  times smaller than the Rayleigh scattering. The anti-Stokes 

vibrational scattered radiation is so small because the vibrational states of simple 

molecules are not likely to be populated at normal atmospheric temperatures. Figure 2.1 

illustrates the Stokes and anti-Stokes scattering process. 

A unique feature of the Raman scattering process is that the 

frequency/wavelength shifts are characteristic of the particular molecular species 

involved, and thus identify the molecular species that caused the scattering. If more than 

one molecular species exist in the volume, the scattered radiation will have components 

from all the different species. This suggests that in order to retrieve water vapor profiles 

from the atmosphere, we can irradiate the atmosphere with a  monochromatic source of 

light (laser beam) and detect the scattered radiation with a very narrowband filter at the 
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wavelength of the scattered radiation for the given transmitted wavelength. A Raman 

lidar has capabilities to perform the aforementioned tasks. 
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Figure 2.1.  Illustration of Raman vibrational scattering [12] 

 

2.2 Lidar Atmospheric Profile Sensor (LAPS) Lidar. 

The LAPS lidar is a monostatic, optical remote sensing instrument which employs 

Raman scattering techniques to investigate properties of the lower atmosphere. The 

LAPS Lidar was developed at Penn State University [12]. A typical  lidar configuration 

consists of a laser transmitter which sends a pulsed  beam to scatter from the molecules 

and  particles in the atmosphere. The backscattered and Raman shifted wavelengths are 

collected by a receiver consisting of a telescope and detection electronics.  The intensity 

of the received signal is directly proportional to the atmospheric constituents such as 
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water vapor, ozone and parameters such as temperature and optical extinction. A Raman 

Lidar uses one or more optical detector channels consisting of filters, beam splitters and 

other optical components corresponding to each  species to be observed. The narrowband 

output of the detector of each channel illuminates its associated photo multiplier tube 

(PMT) which generates an electrical signal output. The current output is amplified and 

quantized by a binary threshold discriminator to yield a logic level signal which is given 

as an input to a counter to count the number of photons collected from the channel. The 

measurement is range resolved in 75 m intervals (500 ns bins) and the arrival time of the 

backscattered light pulse is a measure of the altitude of the scattering volume [14]. 

The configuration of the various subsystems of the LAPS lidar is given in Table 

3.1. The LAPS instrument is contained in two separate housings. The  transmitter, 

receiver and control electronics are inside a weather sealed  container, and the control 

console includes the detector box, the data collection electronics, and a computer used for 

instrument control, data storage and real time data processing. The transmitter is a high 

power Nd:YAG laser with a primary wavelength at 1064 nm that is passed through 

nonlinear crystals, which double and quadruple the primary frequency to produce the 

output wavelengths at 532 nm and 266 nm. The residual primary wavelength is dumped 

on a water cooled surface. The details of the transmitter are given in Table 2.2.  Figure 

2.2 shows the transmitter and receiver of the LAPS instrument. The return signal is 

collected by a zenith pointing prime focus paraboloid  telescope which is focused onto a 

1-mm diameter optical fiber. The signal is transferred to a detector box in the console unit 

by the fiber optic cable. The detector box, shown in Figure 2.3 consists of 8 channels 
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corresponding to 7 Raman channels and a Rayleigh channel.  The details of the 8 

channels are given in Table 2.3.  

 

Table 2.1.  LAPS Lidar System Configuration [13] 

Transmitter Continuum 9030 –30 Hz 
5X Beam Expander 

600 mJ @ 532 nm 
130 mJ @ 266 nm  

Receiver 61 cm Diameter Telescope 
Focal length – 1.5 m 

Fiber optic transfer 

Detector Eight PMT channels 
Photon Counting 

660 and 607 nm – Water Vapor 
528 and 530 nm – Temperature 
295 and 284 nm – Daytime Water Vapor 
277 and 284 nm – Raman/DIAL Ozone 
607, 530, and 284 nm – Extinction 
532 nm – Backscatter 

Data System DSP 100 MHz 75-meter range bins 
Safety Radar Marine R-70 X-Band Protects 6° cone angle around beam 

 
 

Table 2.2. LAPS Transmitter characteristics. [15]] 

Laser  Continuum Model 9030 with 5X Beam Expander
 
Pulse Frequency 

30 Hz 

Pulse Duration 8 ns 
Fundamental Power 1.6 J/Pulse 
Power Output at 1064 nm Dumped into heat sink 
Energy Output at 532 nm 800 mJ/Pulse  
Energy Output at 266 nm 120 mJ/Pulse - BBO ; 90 mJ/Pulse – KD*P 
Beam Divergence (after expansion) 0.1 mrad (FWHM) 
Linewidth (1064) 30 GHz (1 cm-1) 
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Figure 2.2 (a) LAPS Transmitter (b) LAPS Receiver (Courtesy C.R.Philbrick) 
 
 
 
 
 
 
 
 
 

 



 29

 
Table 2.3.  LAPS detector channels [13] 
 
 

Property 
Measurement Altitude Time - Resolution 

Water Vapor 660/607 (H2O/N2) 
408/387 (H2O/N2) 

Surface to 5 km 
Surface to 5 km 

Night - 1 min 
Day & Night - 1 min 

Temperature 
528/530 
353/354 
Rotational Raman 

Surface to 5 km 
Surface to 5 km 

Night - 10 to 30 min 
Day & Night - 10 to 30 min 

Extinction 
530nm 

530 nm 
Rotational Raman Surface to 5 km Night - 10 to 30 min 

Extinction 
607nm 

607 nm N2
Vibrational Raman Surface to 5 km Night 

10 to 30 min 

 
 
       The optical signals are converted to electrical signals by detecting and amplyfying 

them through high sensitivity photomultiplier tubes (PMT). Photon counting techniques 

are used to quantify the backscatter signals. The data collection unit for each channel 

consists of a photomultiplier tube, amplifier, discriminator, counter and accumulator.  

284 nm

532 

295 nm
Fiber Optic Input 

660 nm

607 nm 528 nm

277 

530 nm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3. LAPS photon detector block diagram  [14]  
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The electrical signal is stored as the photon counts for each altitude bin for each channel 

by a DSP board and the signal is retrieved by a computer on the console. The DSP board 

integrates the return signals for one minute intervals in 75 m range bins. 

 
 
2.3 Measurement of Water Vapor 

The  LAPS instrument can obtain water vapor profiles from the atmosphere from 

the 607nm and 660nm channels . The instrument is ideally suited to measure the water 

vapor mixing ratio, defined as the ratio of number density of water vapor molecules in the 

atmosphere to the density of ambient air molecules. Nitrogen is a constant  portion of dry 

air in the atmosphere and it is used to describe the density of ambient air. The water 

vapor mixing ratio in the atmosphere is determined by analyzing the lidar return signal. 

The power of a signal measured by a monostatic lidar at a given wavelength is 

given by the lidar equation [16], 
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where, 

z  is the altitude of the volume element where the return signal is  
 scattered, 
λT  is the wavelength of the laser light transmitted, 
λR  is the wavelength of the laser light received, 
ET(λT)  is the light energy per laser pulse transmitted at wavelength λT, 
ξT(λT)  is the net optical efficiency at wavelength λT of all transmitting  
 devices,  
ξR(λR)  is the net optical efficiency at wavelength λR of all receiving devices,  
c  is the speed of light, 
τ  is the time duration of the laser pulse, 
A  is the area of the receiving telescope, 
β(λT,λR)  is the back scattering cross section of the volume scattering element  
 for the laser wavelength λT at Raman shifted wavelength λR,   
α(λ,z')  is the extinction coefficient at wavelength λ at range z'. 
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The received signals of the N2 and H2O channels are used to calculate the water 

vapor mixing ratio. The water vapor mixing ratio for the ultraviolet channel is obtained 

from the following relationship [15], 
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 where, 

SO2 is the received signal from the vibrational Raman shift of O2 at 277 nm. 
SH2O is the received signal from the vibrational Raman shift of H2O at 660 and  
295 nm, 
SN2 is the received signal from the vibrational Raman shift of N2 at 607 and 284 
nm, 
σx is the is the Raman cross-section of x at the laser wavelength 
Kcal is a calibration constant.  
σx  can be calculated from standard tables given in [16]. 
  
Kcal is obtained by calibrating the lidar data with that obtained from radiosondes. 

Equation (2.2) takes into account the ozone absorption in the solar blind region of the 

spectrum in the troposphere for the 284nm and 295 nm signals. In the visible band, the 

signal suffers attenuation from the aerosol backscatter and accordingly, provision is made 

for it by computing the water vapor mixing ratio obtained from the 607 nm and 660 nm 

channel as, 
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Where, K = Kcal*exp( 
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2.4 Summary 

Penn State University’s LAPS Lidar utilizes Raman scattering theory to determine 

the properties and atmospheric constituents useful for air pollution remote sensing. In 

particular, we have seen that the two water vapor channels in the visible and ultraviolet 

give us information about the water vapor mixing ratio for both night and day 

measurements. This water vapor mixing ratio data will be used by the wavelet and image 

processing algorithms to be discussed in the following chapters for automatic 

determination of boundary layer depth. 
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Chapter 3 

Determination of Boundary Layer Depth Using Wavelet Techniques 

 

A capability to routinely determine the boundary layer depth leads to several 

interesting applications. Thickness of ABL describes the mixing zone where gaseous 

emissions and air particles are distributed. A qualitative view of the evolution of the 

boundary layer can be obtained from the visual perception provided by a time sequence 

of water vapor profiles from backscatter profiles obtained by lidar and radar respectively. 

However, a measurement of the actual depth of the mixing layer is especially useful for 

the aerospace industry and for environmental monitoring. Weather prediction depends on 

various numerical weather prediction models (NWP), such as RAMS (Regional 

Atmospheric Modeling System) and MM5 (Mesoscale Meteorological Model). The MM5 

model describes several meteorological features, including wind speed and direction, air 

temperatures, and the height of the atmospheric boundary layer [17]. Providing 

information about one of the outputs of the model, such as the boundary layer depth, as 

an input to the model will help in the adaptive scaling of the model parameters for a 

better prediction. The ABL depth is also one of the critical parameters needed as input for 

atmospheric dispersion models. The accuracy of these models depends on the accuracy of 

the input data. Lidar provides very high resolution data on the atmospheric parameters. 

Hence, a good ABL depth algorithm obtained from measurements of lidar will find 

applications in the atmospheric community. The previous work in the field of ABL depth 

determination had concentrated on wavelet analysis. Section 3.1 discusses the principles 

behind the estimation of ABL depth using these previous techniques. Previous published 
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work has utilized radar as a remote sensing instrument for estimation of ABL depth, but 

here we will address the correlation between radar backscatter profiles and lidar water 

vapor profiles. Raman lidar profiles of water vapor have been chosen to estimate ABL 

depth in this thesis. Section 3.1 will discuss the approach for determination of ABL depth 

from radar [18]. Section 3.2  will discuss some of the definitions in wavelet analysis. 

Section 3.3 discusses application of wavelet analysis to an algorithm for ABL depth [18]. 

These discussions in Chapter 3 lay the foundation of prior work developed by [18] before 

introducing our new approach in Chapter 4.  

 

3.1 ABL Depth Estimation Principles 

Possible methods to compute ABL depth could be developed from measurements 

obtained using tethersonde, radiosonde, wind profiler, RASS and LIDAR. The usually 

sharp gradients in aerosol concentration and specific humidity through the Entrainment 

Zone (EZ) at the top of the boundary layer provide signatures  which define the boundary 

layer depth zi. Results of  zi measurements from wind profilers have been reported [19, 

20]. Investigations have compared results of radiosonde measurements of the PBL depth 

with those obtained from wind profilers [21]. Also, lidar measurements of aerosol 

backscatter have been used to describe ABL depth measurement [22, 23]. These 

investigations reported a good correlation in the gradient height, zi, between the aerosol 

backscatter measured from lidar and moisture measured with aircraft. Thus, lidar 

backscatter can retrieve information on ABL depth based on gradients in aerosol or 

moisture concentration at the top of the ABL. Wind profilers measure the backscatter, 

which depends on moisture gradients, and a good correlation has been reported between 
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lidar backscatter and wind profiler backscatter [24, 25]. Our task of estimating the 

boundary layer depth will primarily focus on using the Penn State University’s LAPS 

Raman lidar to measure the profiles of water vapor mixing ratio. The LAPS lidar is 

ideally suited to describe the thickness of the ABL using both the 607 nm, 530 nm, and 

284 nm channels for extinction profiles and the ratio of 660 nm to 607 nm for water 

vapor profiles. The LAPS lidar also has the provision to measure profiles of the direct 

backscatter using the Pcount system. Hence, each of these 5 profiles can be used for the 

estimation of ABL height zi. 

A measurement of zi is also an indicator of the region of the entrainment zone 

(EZ). In theory, the EZ is defined as the region in which the mean buoyancy flux is 

negative [26]. The buoyancy flux is given by,  

                                              Buoyancy flux (zi) = E[ )()( zzw θ ′′ ],                             [3.1] 

 

where   is the turbulent component of the vertical wind velocity at altitude z, )( ′zw
 )( ′zθ  is the turbulent component of the potential temperature at altitude z, and 
       E[ ]   is the expectation operator averaging over measurement recorded at  
                different times. 

 

As flux profiles at the top of the boundary layer are quite difficult to measure , the EZ 

has also been defined as the region in which virtual potential temperature, moisture 

and/or aerosol profiles have strong gradients. In remote sensing, EZ is defined as the 

region in which more than 5% , but less than 100%, of the air in a horizontal or temporal 

transect has free troposphere characteristics, such as low aerosol concentration (lower 

backscatter) and/or low humidity [27, 28].  
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3.2 Theory of the measurement of ABL Height from a Wind Profiler   

The backscattered power from a wind profiler is given by the radar equation [24] 

                              PR  = PT
)2ln(1024 22

222

r
hG

π
θλη ,                                           [3.2] 

 

where              η   = radar reflectivity per unit volume, 
           PT  = transmitted peak power, 
           PR  = wind profiler backscattered power, 
           G   = antenna gain, 

λ   = radar wavelength, 
           r    = range to the backscatter volume, 

                       θ   =  beam width,           
                       h   =  pulse length = 2 x range resolution. 
 

The wind profiler radar reflectivity η is proportional to the refractive index 

structure constant Cn
2 [25],  

                             η = 0.38Cn
2λ-1/3 .                                            [3.3] 

 

The average value of Cn
2  is strongly dependent on gradients in the water vapor 

mixing ratio, q, in a turbulent boundary layer. The relationship between q and specific 

humidity is given in Appendix  A. The average value of Cn
2  within the pulse volume is 

given by [24],  

                                               Cn
2 =  3/2

2)]()([

δ

δ rnrn −+
,                     [3.4] 

 

where < > is a spatial average over the radar volume, 
 δ is a spatial offset,  
 n is the radio refractive index.  
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The value of δ is taken as λ/2 because wind profilers measure returns from Bragg 

scattering. When the radar wavelength, λ, projected onto a surface matches a periodic 

structure on the surface, a resonance effect is obtained causing a strong backscatter. This 

effect is known as Bragg scattering. In the atmosphere, the variations in refractivity of 

clear air caused by density gradients can result in Bragg scattering. We observe that PR is 

directly proportional to Cn
2,  which is directly proportional to the square of the gradient of 

the refractive index. The refractive index, n, at radar wavelengths is directly proportional 

to the water vapor mixing ratio, q,  

                    n = 1 + 61073.71776 −×⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
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T
q

T
P .         [3.5] 

 

where P is the pressure in kPa and T is the temperature in K [24]. From the above 

equations, we see that large values of  Cn
2, and therefore PR,  are due to refractive index 

gradients which correspond to water vapor gradients. 

The wind profiler backscatter intensity exhibits a peak that is due to the gradient 

in water vapor between the boundary layer and the free troposphere. This peak can be 

used to identify boundary layer depth, zi. The peak in the reflectivity grows throughout 

the morning hours and becomes less well defined in the afternoon. An exampler diurnal 

SNR profile from the radar on 07/14/1999 during the NEOPS campaign is shown in 

Figure 3.1. As seen from Figure 3.1, there exists a gradient in the backscattered power at 

the top of the boundary layer. Determination of boundary layer depth is therefore a 

problem of identifying the gradient location. If the depth is needed for every profile, then 

wavelets are ideally suited for this application as they focus on a small time resolution. 
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Figure 3.1. Plot of diurnal variation of radar SNR for a 24 hour period on 07/14/1999  
           during the NEOPS campaign. Radar SNR is directly proportional to the radar  
 reflectivity from Equation 3.2. 
 

Wavelet transforms are capable of providing the time and frequency information 

simultaneously, hence giving a joint time-frequency representation of the signal. It is 

especially suitable for geophysical signals which exhibit either non-stationarity or quasi-

stationarity.  The wavelet transform uses a basis set which is best able to obtain the 

desired features from the signal. In the case of the altitude profiles of water vapor, a basis 

set, such as the Haar wavelet which has steep transitions, can be useful to retrieve 

information about the gradient in the signal at the top of the boundary layer.  The Haar 

wavelet definition is given in the following section. 
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3.3 Wavelet Transform Definitions and Insights 

In this section we estimate the boundary layer depth obtained using a Haar 

wavelet transform as given in [18]. The Haar function is defined as [29],       

                               

                                          h ⎟
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where z represents the vertical extent in this application, a and b describe the dilation and 

translation of the function, respectively. In simple words, the dilation is an indication of 

the spatial scale of the “event”, or the altitude resolution required, and the translation 

gives a measure of the altitude at which the “event” of interest occurs.  

The convolution or localized transform is given by,  

      Wf (a,b) =  dz
a

f
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.                                     [3.7] 

where zb and zf  are the bottom and final altitudes in the lidar backscatter profile and f(z) 

is the lidar backscatter signal as a function of altitude, z . While standard texts use a-1/2  as 

a norm (magnitude) preserving normalizing factor, the advantage of  the a-1  

normalization is that sharp transitions can be determined easily [30]. 

The function Wf (a,b), also known as the covariance transform is a measure of the 

similarity between the basis set, h, and the function of  interest, f. In general, the 

covariance between functions, f and h, is defined as : 
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                                            covf,h(a,b) = dx
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The coefficient of correlation between two functions is given by,  

                               rf,h (a,b) = [ ] 2/1
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hf                                 [3.9] 

 

For the Haar function considered, covh,h(a,b) = 1. Noting that  covf,h(a,b)  is the 

same as Wf (a,b) , the above equation can be written as,   

          Wf (a,b) =  rf,h (a,b)[covf,f(a,b)]1/2                                      [3.10] 

 

In the above equation rf,h(a,b) is a measure of the similarity in shape between f 

and h in the neighborhood of b. While positive values of rf,h(a,b) indicate in-phase 

similarity, negative values indicate out of phase similarities. As rf,h(a,b) is just a measure 

of similarity, it will equally weight signals of arbitrary amplitude but of similar shape. 

This implies that it cannot distinguish between low variance noise and actual signal 

representing “an event”.  On the other hand, covf,f (a,b) is a measure of the variance of the 

signal in the neighbourhood of b and provides a means of distinguishing between “noise” 

signals (lower variance) and “event signals” (higher variance). Hence, Wf (a,b) is a 

measure of both the similarity between the basis function, h, and the signal, f, and 

accounts for the variance of the signal in the neighborhood of b. It should be noted that 

the covariance transform at low dilations corresponds to finding the features in a very 

small altitude range and hence will give information about the noise in the region rather 
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than the signal. A very large value of the dilation, such that the entire altitude profile falls 

within one half of the Haar wavelet, will simply result in averaging the signal. Hence, a 

measure for choosing the right value of the dilation constant needs to be found. The 

appropriate dilation can be chosen by examining the variance of the covariance transform 

evaluated over all translations [30]. Accordingly, we can utilize  

                                          D2(a) = [ ] dbbaWf

b

z

z f

2
),(∫ ,                                       [3.11] 

 

which is similar to the power spectrum and it of the portion of variance of f(z) at each 

dilation a. However, this provides no information about the location of the variance since 

we have integrated over b. D2(a) is also referred to as wavelet variance [30]. The 

maximum in the wavelet variance occurs at the maximum possible dilation. Applying the 

aforementioned principles, an algorithm has been developed for estimation of ABL depth 

[18]. 

 

3.4 Algorithm for ABL Depth Estimation Using Wavelet Transform Approach  

In this section, we will describe a technique to estimate ABL depth using the principles 

enunciated in Section 3.3.  

1) Calculate the covariance transform Wf(a,b) and D2(a) for each vertical profile. 

2) Search for the maximum D2(a), i.e  find,   

                              amax = arg max (D2(a))                                              [3.12] 

 

3) Search Wf(amax ,b) for local maxima* and minima* in the translation domain, i.e, find, 

                                                    bmax = arg max (Wf(amax ,b))                                   [3.13(a)] 
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                                                    bmin =  arg min (Wf(amax ,b))                                  [3.13(b)] 

 

4) The boundary layer depth for the particular profile will be given by, 

                                        zi = bmax .                                        [3.14] 

 

In some cases, a visual inspection may reveal that other processes in the atmosphere, or 

artifacts in the data, may cause the value of  bmax to not give the right value of the 

boundary layer depth. A solution to this problem is found by arranging the descending 

order of local maxima values of the covariance transform and their corresponding 

translation to determine the boundary layer depth [18], i.e.,  

                                          bmax
(1)  =  arg max (Wf(amax ,b)) ∀  b                                   [3.15] 

 

Then, we recursively compute for i = 2 to NLmax  in steps of 1, 

          bmax
(i)  =  arg max (Wf  (amax ,b) ) , b ≠ jbmax , j ≠ 1,..i-1.                 [3.16] 

 

where NLmax is the  number of local maxima for a particular vertical profile. The set of 

possible ABL depths for a particular vertical profile, say the kth  vertical profile  will be 

given by the vector, 

 

                    z k
i   = [ ….. ] .                                           [3.17] kb ,1

max
kb ,2

max
kNLb max,

max

 

5) If a time series is being considered, the set of all possible boundary layer depths will 

form a matrix, 
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                    Zi  = [ zi
1  zi

2  ….  Zi
NLmax ] .                                             [3.18] 

 

In Sections 3.1 and 3.2, we argued for the application of the ABL depth 

estimation using data from LAPS Raman lidar. Accordingly, we have applied the wavelet 

transform approach on data obtained from LAPS lidar by finding only the first local 

maxima and results from the approach are shown in Figure 3.2. Including a higher 

number of local maxima and minima, we obtain information about other layers as 

depicted in Figure 3.3. We observe that while the former technique could only trace one 

residual layer, the latter approach can trace both the residual layer and the mixed layer as 

well as the thin cloud entering the mixed layer. 

 

3.5 Summary  

The wavelet technique is able to detect the various layers in the atmosphere. We 

used Equation 3.13a to compute the local maxima for an altitude profile at a particular 

time, and a time series was obtained by computing the local maxima for all profiles in 

time steps.  The time series of gradient detected from the lidar water vapor profiles only 

traces the strongest gradients which may or may not be continuous. 
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Figure 3.2  Wavelet Transform Technique applied to determine the ABL height for 
08/22/98. The black line shows the ABL height estimated from the technique,  
where only global maxima and minima were taken into consideration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3 Wavelet Transform technique with up to 4 local maxima and minima per  
 profile being used. The black asterisk indicates the values found from the non- 
 global maxima and minima. 
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The analysis demonstrates that the global maxima traces the night time residual 

layer and then slips down to the surface layer without tracing the convective boundary 

layer. Although the successive local maxima trace the CBL, the approach does not 

produce a continuous trace of the residual layer and/or the CBL. 
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Chapter 4 

Image Processing Techniques to Determine ABL Height 

 

Introduction 

The previous chapter discussed the wavelet technique to determine the gradients in 

water vapor concentration as a tracer of ABL height. The wavelet technique analyzes 

each profile and identifies the regions of gradients. Apart from the disadvantages of not 

being able to detect al gradients in the profile and its inability to connect the gradients to 

trace  a layer, it suffers from one more disadvantage, the general shape of the gradient 

needs to be known. The choice of Haar wavelet in the previous chapter was linked to the 

shape of the gradient. When the change in the measured parameter at the top of the 

boundary layer does not follow the sharp gradient of the Haar wavelet, we are required  

to choose an intelligent wavelet basis. This requires individual effort and can become 

cumbersome to a person without a background in wavelets. While the ABL depth 

calculation routine can incorporate different wavelet basis functions and the operator 

needs only to choose one of them, the real world data always contains cases which may 

not fit any of the wavelet basis. In order to obviate this possibility, an image processing 

routine has been developed to extract boundary layer depth. The motivation for using 

image processing techniques comes from the recognition that lidar and radar data provide 

a two dimensional signal in space and time. An extensive background of work on 

edge/gradient detection already exists for two dimensional images. Therefore, edge 

detection techniques are developed and applied to determine ABL height in this thesis. A 

search has not located any published work in the literature on using these techniques for 
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ABL height measurement. The estimation of ABL depth using Image Processing 

techniques involves 4 steps :  

1. Preprocessing the data to enhance the edges, 

2. Edge detection using gradient  techniques, 

3. Edge linking, 

4. Edge following. 

 

4.1 Preprocessing the data 

Preprocessing is used to remove noise in the image. Lidar data provides signals 

corresponding to a particular point in time and space which can be treated as a pixel of an 

image. Digital image noise usually appears in the high frequencies of the spectrum and 

hence a low pass filter is used to eliminate the effects of noise. But, in edge detection 

problems, care should be taken to ensure that edges, which are high frequency signals, 

are retained. A median filter fulfils this task efficiently [31]. Median filter belongs to a 

class of filters known as order-statistic filters in which the order of pixels is used for 

filtering. Applying a median filter involves replacing the gray level of each pixel by the 

median of the pixels in its neighborhood. A neighborhood of pixels is obtained by 

considering pixels in x and y directions on both sides of the pixel in consideration. This 

method is particularly effective when the noise pattern consists of strong, spike like 

components and the characteristic to be preserved is the edge sharpness. This approach 

achieves noise reduction without blurring [32].  

Let G(i,j) be the grayscale value of a pixel in the image and consider a 3 x 3 

neighborhood. The value of the pixel after median filtering will be : 
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G(i,j)’   = median { G(i-1,j-1), G(i-1,j), G(i-1,j+1), G(i,j-1), G(i,j), G(i,j+1), G(i+1,j+1),  

        G(i+1,j), G(i+1,j+1) }.           

 = Middle value (sort { G(i-1,j-1), G(i-1,j),G(i-1,j+1G), G(i,j-1), G(i,j), G(i,j+1),  

    G(i+1,j+1), G(i+1,j), G(i+1,j+1) }).       [4.1] 

 

Another common procedure is to move a “mask” through the image and change 

the pixel values. A “mask”, say ‘M’ which is also referred to as a kernel, is a matrix of 

values such that the number of rows and columns are odd. The element corresponding to 

the center element of the masking matrix is the value corresponding to the pixel in 

consideration. The pixel and its neighborhood is multiplied by the elements of the mask 

and the new value of the pixel is the summation of these products. As seen from the 

equation below, “masking” is the convolution of a two dimensional signal with the filter 

also known as mask or kernel. 

                    G’(i,j)  =                    [4.2] ∑ ∑
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A mask used for edge detection is shown in Figure 4.1. The large value of the 

center pixel and the gradual  
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               Figure 4.1 Edge Filter Mask 
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Some of the features of the median filter are: 

1) Nonlinearity and hence 

     median{x(m) + y(m)} median{x(m)} + median{y(m)}, ≠

2) Useful for removing isolated lines or pixels while preserving spatial resolutions, 

3) Performs well on images containing binary noise but performs poorly when the noise 

is Gaussian, 

4) Poor performance when the number of noise pixels in the window is greater than or 

half the number of pixels in the window. 

In some cases, the histogram of the image after edge detection revealed binary 

noise. In our case, the noise in the images is Gaussian and not the impulse noise that 

would be reduced by median filtering. Hence preprocessing the image by a median filter 

would not be beneficial. However it was observed that after edge detection, the main 

characteristic noise in the image was binary. Hence, better results were obtained by 

applying a median filter after the edge detected image was formed. The edge detected and 

median filtered image was then used as the input to a tracking algorithm whose edge 

retaining features were found to be improved. 

 

4.2 Edge Detection 

An edge is the boundary between two regions with relatively distinct gray level 

properties [33].  The basic approach to edge detection is the computation of a local 

derivative operator. From Figure 4.2, we can conclude that the magnitude of the 

derivative of the gray-scale profile will help in detecting the presence of an edge and the 
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magnitude of the second derivative will give information about the region which the edge 

is delineating. 

 

   

      (a) 

 

                               

 

                                                                                                                             

 

      (b) 

     

                                                (c)  

Figure 4.2 :  A gray scale image (a) Its intensity profile (b) First Derivative (c) Second 
            Derivative 
 
Derivatives are implemented in digital form using masks. Some of the common operators 

or masks are Sobel, Prewitt, Laplacian, Laplacian of Gaussian and Derivative of 

Gaussian . Examples of these masks are given in Figure 4.3 [32].  

 



 51

                       -1 0  1 

-2 0 2 

-1 0 1     

1 1 1 

  0 0 0 

-1 -1 -1 

-1 -2 -1 

   0 0 0 

1 2 1 

 

           

 

     (a)      (b)     (c)  

                                                        

 

 

             

 

                           (d)             

0 0 3 2 2 2 3 0 0 

0 2 3 5 5 5 3 2 0 

3 3 5 3 0 5 3 3 3 

2 5 3 -12 -23 -12 3 5 2 

2 5 0 -23 -40 -23 0 5 2 

2 5 3 -12 -23 -12 3 5 2 

3 3 5 3 0 5 3 3 3 

0 2 3 5 5 5 3 2 0 

0 0 3 2 2 2 3 0 0 

0 -1 0 

-1 4 -1 

0 -1 0 

) 

Figure 4.3 Some  common masks used  (a) 
horizontal gradient detector (c) Prew
Gaussian for standard deviation = 1

 

(e
Sobel Vertical gradient detector (b) Sobel 
itt vertical (d) Laplacian. (e) Laplacian of  

.4 
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4.3 Laplacian Mask 

The Laplacian is a 2-D isotropic measure of the 2nd spatial derivative of an 

image. The Laplacian of an image highlights regions of rapid intensity change and is 

therefore used for edge detection. The Laplacian is frequently applied to an image that 

has first been smoothed with an operator approximating a Gaussian smoothing filter in 

order to reduce its sensitivity to noise, and hence the two variants will be described 

together here. The operator normally takes a single graylevel image as input and produces 

another graylevel image as output. The Laplacian L(x,y) of an image with pixel intensity 

values I(x,y) is given by, 

                                                L(x,y) = 2

2 ),(
x

yxI
∂

∂  + 2

2 ),(
y

yxI
∂

∂ ,                                  [4.3] 

where I(x,y) is the Intensity of the gray scale pixel [32]. 

Since the input image is represented as a set of discrete pixels, we need to find a 

discrete convolution kernel that can approximate the second derivatives. Using one of 

these kernels, the Laplacian can be calculated using Equation 4.2. These kernels 

approximate a second derivative measurement on the image and they are very sensitive to 

noise. Hence, the Laplacian cannot be used in isolation. Moreover, the Laplacian 

operation produces double edges and is unable to detect edge direction. To counter this, 

the image is often Gaussian smoothed before applying the Laplacian filter [32]. A more 

general use of the Laplacian is in finding the location of edges using its zero crossings 

property. This concept is based on convolving an image with the Laplacian of a 2-D 

Gaussian function. A two dimensional Gaussian function is of the form,  

 

http://www.dai.ed.ac.uk/HIPR2/spatdom.htm
http://www.dai.ed.ac.uk/HIPR2/gsmooth.htm
http://www.dai.ed.ac.uk/HIPR2/gsmooth.htm
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                     h(x,y) = 
( )2

2

1
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⎝

⎛ +
− 2

22

2σ
yx                                     [4.4] 

where σ is the standard deviation. In order to obtain the Laplacian of Gaussian (LoG), we 

can change variables to polar form for better manipulation. If , the Laplacian 

of h (i.e, the second derivative of h with respect to r) is,  

222 yxr +=

         ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
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⎛ −
=∇ 2

2

4

22
2

2
exp

2 σπσ
σ rrh  .        [4.5] 

Substituting  in the above equation, we get, the 2-D LoG function centered 

on zero and with Gaussian standard deviation σ of the form 

222 yxr +=

                                         2

22

2
2

22

4 2
11),( σ

σπσ

yx

eyxyxLoG
+

−

⎥
⎦

⎤
⎢
⎣

⎡ +
−−=                                [4.6] 

This pre-processing step reduces the high frequency noise components prior to the 

differentiation step.  

The advantages of using the Laplacian of Gaussian are:  

• This method usually requires far fewer arithmetic operations because the 

Gaussian and the Laplacian kernels are usually much smaller than the image. 

• The LoG (‘Laplacian of Gaussian’) kernel can be precalculated in advance so 

only one convolution needs to be performed at run-time on the image.  
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Figure 4.4 shows a plot of the LoG function in three dimensions. Results from applying 

the LoG mask and the edge detection to the image of 08/22/1998 is shown in Figure 4.5. 

 

 

 

 

 

 

Figure 4.4 A 3-dimensional view of the Laplacian of Gaussian function for variance =1.4. 

Other filters such as Canny, Prewitt and Sobel were also tried and their results are 

shown in Figure 4.6(a)–(e). One of the parameters which controls the edge features is the 

variance used for the mask. It was found that in order to reduce the noise and only detect 

the prominent edges, the variance of the filter needs to be minimized. A lower variance 

for the filter implies less tolerance to the outliers in the image, which in our case happen 

to be treated as noise. Among the Canny, Sobel, Prewitt, Roberts Cross and Laplacian of 

Gaussian (Log) filters, the LoG filter was able to obtain the image with the least noise,see 

Fig.4.5(e). We can obtain a similar output with improved noise performance from non-

LoG filters,but  at the expense of  losing some edges pertaining to the main features of 

interest. 
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Figure 4.5. Contour  plots of the data sho
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and hence they were removed by fixing the variance of the LoG filter to a small value of 

0.8. The other filters are also capable of giving the same result with respect to removal of 

minor features with a decrease in their variance, except that some of the edge information 

of the ABL boundaries is also lost in the process. Hence, we decided to use the LoG filter 

for further applications.  

Comparison of Figure 4.6 (a-e) with Figure 3.3 shows that while the Haar wavelet 

basis fu

4.4 Edge Following  

ection and post processing by a median filter, we are left with a 

binary 

nction could only detect some of the edges with no continuity in the edges, all of 

the discussed edge filters provided continuous edges. The better performance of the edge 

detection compared to the wavelet transform technique is due to the 2-D spatial 

information processed by the edge filters compared to 1-D information used by the 

wavelet transform. The 2-D spatial filters exploit the spatial correlation of the 

atmospheric scalar variables. The weights associated with surrounding pixels and the 

spatial width of the filter determine the detection ability of an edge. 

 

After edge det

image. A visual display of the image will clearly show the different layers in the 

atmosphere for that time sequence. Often, we may need to know the actual altitude of a 

particular layer. This would involve tracking the different points to form a path and find 

N such paths. The edge information is arranged in the image matrix as binary 

information, 1  corresponding to the presence of an edge at a particular point in space and 

time and 0 otherwise. This arrangement of the edges on the image can be viewed as a 

graph with the 1’s corresponding to nodes. Thus the problem of tracking k different 

layers in the atmosphere corresponds to choosing k of the N possible paths in the graph. 
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Extensive work has been done in the fields of Graph Theory and Operations Research to 

address these issues [34]. Here we choose a particular technique known as “Bellman’s 

Principle of Optimality.”  

Bellman’s optimality principle states that “A policy is optimal if, at a stated 

period,

 
.4 Dynamic Programming Algorithm for Edge Following 

In order to apply Bellman’s principle to determine the k optimal paths, we 

develop

Distance Matrix and hereafter denoted as D with an 

lements indexed 

 whatever the preceding decisions may have been, the decisions still to be taken 

constitute an optimal policy when the result of the previous decisions is included. Thus 

an optimal policy must contain only optimal sub policies [35].” In other words, 

successive local optima give rise to global optima [36]. 

 

4
 
 

 an algorithm given below: 

1) Initialize a matrix, to be called 

arbitrary large value. This matrix will contain the accumulated distance between a node 

in consideration and its nearest neighbor. The dimensions of the D matrix will be H x T, 

the number of rows corresponding to the number of altitude bins and the columns 

corresponding the number of steps in time. For example, using a 2 hour dataset with 30 

minutes integration and 5 minute steps, Nminsteps will be 120 /5 =  24 . 

2) Initialize another matrix, called the Index Matrix, denoted I, with all e

to the lowest altitude to be measured. For convenience sake, we can work with range bin 

numbers instead of altitudes and hence the number of range bins will be from  

1 to (Max Height – Ground Altitude)/75. The upper limit is rounded off to the lowest 

integer. Hence, I can be initialized with 1 for all elements. The I matrix will give the 

 



 61

range bin index of the  nearest neighbor. The dimensions of this matrix will be the same 

as Dm. 

Our goal is to find N different paths through the nodes (pixels) and choose K of 

them a

 distance starting from the 

 time step and consider a node. Find the set of all possible previous 

is present in the ith  row of the xth column  1 ≤ i ≤ H 

) Find the nearest previous neighboring node (denoted by n) from the previous time 

                                                   1 =  [1 1…..1]T   H  x 1                    [4.7a] 

) })                

 

s representing the various processes in the atmosphere.  

3) Reinitialize the first  column of D  to 0 to make the reference

first time instant as 0. 

4) Advance to the next

neighbors. This set will include the nodes of the previous time step, that by definition are  

edge points (1’s). Let v(x) be a vector of valid edges corresponding to the particular 

time/column denoted by ‘x’ (the x-axis represents time whereas the y axis represents 

altitude). The elements of v(x) are  

  v(i,x) =  1 if an edge 

     0 otherwise 

 

5

index and store it as a valid previous index in the matrix I in the  row and column of the 

Index matrix corresponding to the current node.  

 

  

              n(x,y)  = min(arg min  { | 1 – v(x-1  |                 [4.7b] 

                                I(x,y) = n(x,y);                                   [4.7c] 

 



 62

If the previous time index did not have any node (remember that edge detection is 

not perfect and usually leaves gaps between successive points), we can choose an option 

to search upto ‘p’ previous neighbors. The value of ‘p’ is arbitrarily chosen and depends 

on a subjective evaluation of the image. In general, n(x,y) should then be replaced by  

 

n (x,y)  = arg min {| y – arg(v(x –1))|}                 [4.7d] 

                  where y = y*1;                                                        [4.7e] 

 

If the image contains regions where the lidar data was not available, ‘p’ should be 

less than the width of the unavailable time period measured in time steps. In this thesis, 

we did not use the p previous neighbor concept and used only the immediate previous 

neighbor for our results. 

6) Compute the Euclidean distance from this valid node to the current node and evaluate  

the sum of this distance and the accumulated distance to the previous node, 

 

                                     D(x,y) = D(x-1, I(x,y)) +   ( )2(x,y)Iy1 −+ .                 [4.8] 
 
 
In the general case of p previous neighbors, [4.8] can be written as, 
 
 

                       Dp(x,y) = Dp(x-1, I(x,y)) +   ( )22 (x,y)Iyp −+ .                       [4.9] 
 

7) Repeat steps (5 )and (6)  for every node at a particular time index. 

8) Repeat (7) for all time steps. 

This completes the forward distance computation. Path tracking has to be done 

backwards. 
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9) Sort the accumulated distance of the last time step stored in the last column of D and 

choose the mth smallest value for the mth path. Let its altitude  be  denoted as Bm (m,T).  

 

                          Bm (m,T) = argmin,m (D(:,T)) .                                       [4.10] 

 

Find the mth  best previous neighbor by  

 

                                   Bm (m,x – 1) =  I (Bm(m,x), x )                                       [4.11] 

 

10) Compute Equation  (4.11) for x decreasing from T-1 to 2 in steps of -1. 

11) Choose K of these N different paths by inspection.  

 

12) Convert the altitude bins to altitude using the relation 

 

                                      altitude = (37.5  + 8) + (altitude_bin – 1)*75                         [4.12] 

 

Here, altitude_bin is the altitude bin. The altitude is referred to the center of the bin. The 

ground altitude of 8m and bin size of 75 m for the LAPS lidar has been taken into 

account. 

13) This procedure should result in the high resolution boundary layer information. We 

have found the boundary information from the image and the result is up-sampled in 

time. Hence, we need to downsample/decimate the boundary layer information. As the 
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number of time steps in the image is usually not an integer multiple of the time steps we 

obtained from the lidar data, we need to decimate using polyphase implementation. 

14) Repeat (1) to (12) for m varying from 2 to N. 

 

Results and Discussion 

The application of the dynamic programming algorithm to the example data set is shown 

in Figure 4.7. Only the 1st  best path was computed and plotted as black asterisk. The 

boundary layer depth is plotted as a time series profile in Figure 4.8. It is observed that 

even the first iteration of the algorithm which computes the path with the shortest 

distance is able to give a continuous trace of the residual layer and the mixed layer.  

Figures 4.9, 4.10 and 4.11 show the tracing of the residual layer at night time 

during the NEOPS campaign of 1999. In Figure 4.9, there are two gaps when the lidar 

data was unavailable and one period near 12:30 UTC because of a cloud feature. As a 

result, we see no profile information corresponding to those time periods. Such data 

outages are typical in a practical scenario when working with lidar or radars. The edge 

following algorithm described earlier utilized the 1st nearest neighbor variant which 

requires edges to be detected within one pixel value in order to obtain a continuous 

profile. Inspite of this requirement of the nearest neighbor at a pixel in an adjacent 

column, the algorithm was able to trace the layer due to provison being made for such 

data outages by assigning the pixel value of the lowest range bin to be a valid edge in the 

traced path in the event that no other edges are detected at that particular time step. Two 

points nearest the edge of the data outages should be discarded in the routne application 

of the analysis. Figures 4.10 and 4.11 show traces of the residual layer at night. 
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 Figures. 4.12 and 4.13 are cases of multiple layers being tracked by the image 

processing algorithm. In Figure 4.12, we observe the mixed layer decaying to form a 

nocturnal boundary layer from around 1500 m to 750 m from 00:00 UTC to 04:00 UTC 

which corresponds to 8:00 PM to 12:00 AM local time. Sunset occurs around 8:00 PM in 

the month of July at Philadelphia, the site where the data was obtained. The sudden 

change in the upper altitude data range from 01:00 UTC in Figure 4.11 at 01:00 UTC and 

01:20 UTC in Figure 4.12 is due to the availability of the visible signals after dark. The 

visible channel has a higher power output compared to the ultraviolet channel and can 

therefore obtain return signals from higher altitudes. We also observe a trapped layer 

above the nocturnal boundary layer. This residual layer may contain the effluents which 

are trapped when the buoyant convection disappears at night, also trapping the water 

vapor content from the previous day’s mixed layer. This phenomenon is seen again in 

Figure 4.13, where a trapped layer is observed between 700 and 1000m above ground. 

The study of these trapped layers, their growth and chemical composition is of 

importance in air quality studies. In contrast to the image processing technique, the 

wavelet technique detected only steep gradients in the image in Figure 4.14. The 

gradients detected for a particular maxima/minima jumped from one layer to another and 

thereby did not yield any continuity information. The 2-D spatial filters utilize the local 

information in altitude and time to arrive at a correct estimate of the local gradient while 

the wavelet algorithm utilizes only altitude information. The profiles are correlated in 

time due to the continuous nature of the ABL boundaries. The gradient in a profile will 

be at an altitude close to a similar gradient at time steps preceding and succeeding the 

current observation. The 2-D spatial filters make use of this time correlation information 
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and a proper choice of the mask helps in giving appropriate weight to the available 

information. This availability of information of another dimension gives the image 

processing algorithm an advantage over the wavelet algorithm in gradient detection of 

scalar profiles in remote sensing.  

 Figure 4.15 shows a tracing of the residual layer during the night of July 30-31 

1999 between 10:44 p.m and 1:50 a.m local time. The decay in the residual layer can be 

attributed to night time subsidence. When a high pressure system is formed in the 

atmosphere, a wind component which revolves around the high pressure vortex is 

formed. The vector sum of this wind component with the downward vertical wind 

velocity during night results in a wind vector at slant angles to the horizontal. This 

resultant wind vector creates a water vapor flux (the mean of the product of the turbulent 

quantities of water vapor and vertical wind velocity) which is pushed towards the ground. 

This results in the decrease in the height of residual layer as observed in Figure 4.15.  

 Figure 4.16 shows the image processing algorithm tracing the residual layer while 

Figure 4.17 traces the residual layer. We observe that the trace is quite accurately 

following the residual layer. 

 

 

 

 

 

 

 

 



 67

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.7. The boundary layer depth estimated by the first best path of the proposed
algorithm for the lidar data of 08/26/1998 00:00 to 08/27/98 00:00 UTC. 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.8. ABL depth estimated from time sequence of water vapor for August 21 1998,
05:55 – 11:55 UTC. 
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Figure 4.9. ABL depth estimated from time sequence of water vapor for July 06 1999,  
05:55 – 11:55 UTC. 
 
 

Figure 4.10. ABL depth estimated from time sequence of water vapor for July 07 1999, 
05:55 – 11:55 UTC. 
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Figure 4.11. ABL depth estimated from time sequence of water vapor for July 14 1999,  
            00:00 – 04:30 UTC. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.12. ABL depth estimated from time sequence of water vapor for July 15 1999,  
00:00 – 04:00 UTC.
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Figure 4.13. ABL depth estimated from time sequence of water vapor for July 22 1999, 
05:00 – 08:00 UTC. 
 
Figure 4.14. ABL depth estimated from time sequence of water vapor July 22 1999, 

05:00 – 08:00 UTC using wavelet approach.
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Figure 4.15. ABL depth estimated from time sequence of water vapor for July 31 1999,  
 02:44 – 05:50 UTC. 

 

Figure 4.16. ABL depth estimated from time sequence of water vapor for August 17 1999, 
22:24 – 03:18 UTC. 
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Figure 4.17. ABL depth estimated from time sequence of water vapor for August 19 1999,
00:00 – 04:00 UTC. 
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Chapter 5 
 

Conclusions and Future Work 
 
 

In this thesis, we demonstrated the utility of Raman lidar to measure the depth of 

the Atmospheric Boundary Layer (ABL) by making use of its ability to measure the 

water vapor profiles in the atmosphere which are a tracer of the dynamics of the ABL. 

The wavelet technique used to estimate the ABL depth was implemented and results from 

LAPS Raman lidar were shown. The wavelet technique operates on each profile 

(variation of a scalar parameter with height), and in order to obtain a time series of the 

ABL depth, the algorithm has to be run on profiles at successive time steps. The 

algorithm was shown to estimate gradients in the water vapor profile which corresponded 

to the boundary of layers in the atmosphere. It was shown that the main drawback of this 

algorithm was the absence of continuity of the different transition levels estimated from 

the algorithm. Thus, in the presence of multiple atmospheric layers, the algorithm is 

incapable of giving an estimate of the altitude of the various atmospheric layers. A 

constant wavelet basis was used for each profile. This assumed that all the transitions in 

all the profiles would obey the shape of the wavelet basis. This assumption  prevented the 

detection of transitions which had a gradient different from that of the basis function. 

Hence, it is not good for a general case without some user interference in the choice of 

the wavelet basis function. 

 The image processing technique operates on the entire two dimensional time-

altitude matrix of the scalar parameter (say, water vapor). The algorithm treated the 

problem of gradient detection and tracing of various layers in the atmosphere as 

equivalent to the approach of image edge detection, followed by edge following. By 
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choosing an appropriate variance, the edge detection was found to detect all the required 

gradients. Thus, the 2-D spatial filter exploits the correlated feature of the various layers 

in time and space in the ABL. The additional information of the adjacent profiles gives 

the image processing algorithm the advantage over the wavelet algorithm which operates 

on a single profile only. The testing of variety of edge detection operators ensures finding 

best approach to define that the various layers in the atmosphere. A unique feature of this 

algorithm is that it uses Bellman's optimality criterion for tracing the various layers. This 

edge following algorithm can also be used by the wavelet algorithm for linking the 

various transition points detected by that algorithm.  

 

Future Work 

The edge following algorithm used in this thesis considered only the next 

neighbor, although consideration of the pth  neighbor was also alluded. Future efforts 

could improve the analysis by using the next neighbor or the pth neighbor technique. 

Median filtering was used to retain edge features while removing noisy pixels from the 

edge detected image prior to edge following. There exists in the published literature a 

plethora of non-linear and rank ordered filters whose applicability to the edge 

enhancement in lidar water vapor time sequence has not been studied here. Future work 

can come up with an objective tool to determine the choice of pre and post processing 

techniques for accurate ABL depth estimation. 

 
This new tool to trace the various layers has the potential for improving the 

accuracy of numerical weather modeling, and for the incorporation of Raman lidar as a 

widespread tool in the meteorological community. Numerical Weather Prediction (NWP) 
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models, such as MM5 and RAMS can utilize the ABL depth information from the output 

of the algorithm for assimilation and improving their parameters, so that the weather 

forecast from these models is more accurate. Combined with other measurements, a 

Wiener filter can be used for the adaptive variation of the model parameters to minimize 

the error in model output. The image processing technique will be especially useful to the 

air quality community to obtain measurement of the thickness of the mixing layer and for 

tracing the transport of air pollutants.           
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Appendix  A 

Relationship between Water Vapor Mixing Ratio and Specific Humidity 

 

The relations between specific humidity and water vapor mixing ratio is given below. 

Vapor Pressure is  defined as the pressure exerted by water vapor molecules in the 

atmosphere is denoted as e. The common atmospheric pressure p is the sum of air 

pressure and vapor pressure. 

Mixing Ratio (w) is defined as the ratio of the mass of the water vapor to the mass of the 

dry air, 

                             w =  
AirDry  of Mass
Vapor Water of Mass  .       [A2.1] 

As mixing ratio is a ratio of 2 quantities with the same dimension , it is a dimensionless 

quantity.But, as the mass of water vapor in the atmosphere is far less than the mass of dry 

air, mixing ratio is commonly expressed in gm/Kg. In terms of  vapor pressure, w can be 

expressed as, 

   w = ε
ep

e
−

.         [A2.2] 

   where ε = Ratio of the molecular weight of water vapor to dry air. 
                                                 ≈ 0.622 
 

 The specific humidity is defined as the ratio of the mass of the water vapor to the mass 

of the total air, 

   q = 
Vapor Water of Mass Air Dry  of Mass

Vapor Water of Mass
+

 .       [A2.3] 

                                        = 
w

w
+1

 .                   [A2.4] 
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Appendix B 

MATLAB Programs  

************************************************************************ 
%Waveletmanylayers.m 
%Calculates Boundary layer height by Wavelet technique. 
%Preprocessing by median filter to enhance gradients  
%and Postprocessing by mean filter to remove spikes. 
%Uses haar wavelet .Refer paper by K.J.Davis, "An Objective Method for 
%Deriving Atmospheric Structure from airborne Lidar Observations", 
%Journal of Atmospheric and Oceanic Technology, Nov.2000., AMS 
%Does both global and 1st local maxima calculation compared to blayerheight3.m 
 
clear all 
close all 
load variables19997221; 
[row,col]=size(validmixingratio); 
vmr=validmixingratio; 
 
 
     for a= 1:1:floor(row/2) 
              %basic filter definition.No zero padding - haar wavelet 
              haar=[1*ones(1,a) -1*ones(1,a)]; 
              for b=max(a,4):row - a 
               %Filter with length adjusted to translation 'b' such that zeros have been padded   
               %before and after the translation up to a length equal to the max altitude or the  
               %variable row, i.e the length of the filter is = row. 
 
                haarfilter=[zeros(1,b-a) haar zeros(1,row - b - a)]; 
 
                %Create a matrix of the filter such that each col contains the basic haarfilter 
 
                haarfiltermatrix=haarfilter(:)*ones(1,col); 
 
                %Multiply the haar wavelet  for various times which is in the variable  
                %haarfiltermatrix with the validmixingratio time sequence profile .  
                 % We will get a matrix of the size of the validmixingratio. 
                %Integrate along the heights (rows) to get xd which is 
 
                xd(b,:)=(1/a)*trapz(haarfiltermatrix.*validmixingratio,1); 
 
       end %End computation in b - translation axis 
            %Compute the covariance transform 
            %For every value of dilation 'a' , integrate the square of wavelet filtered time 
            % sequence profile , xd with translation b as the independent variable over all  
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             %altitudes.This will yield a covariance transform wchich depends on 
            %scale 'a' for various times.hence dimension of d2 is (a,col); 
 
            d2(a,:)=trapz(xd.^2,1); 
                   
matrix1=sign(diff(xd)); 
%Create a matrix which has 1 if it is higher than the earlier element in the column  
%i.e , matrix1(i,j) =1 iff matrix(i,j) > matrix1(i-1,j)  
%       matrix1(i,j) =0 iff matrix(i,j) = matrix1(i-1,j)  
%       matrix1(i,j) =-1 iff matrix(i,j) < matrix1(i-1,j)  
 
matrix1=[zeros(1,size(matrix1,2));matrix1];%Pad the matrix with zeros in the first row. 
matrix2=[flipud(sign(diff(flipud(xd))));zeros(1,size(matrix1,2))]; 
%A matrix same as matrix1 with differences being                                                                                
%between row1 - row2 instead of row2 - row1 
 
 matrix3=matrix1 + matrix2; 
%This matrix will have 2 wherever there is a local maxima and lesser values at other 
%points. 
 
matrix3(find(matrix3 ~= 2)) = 0; 
%Replace all elements which are not 2 , i.e those that do not represent local                                            
%maxima with 0. 
 
matrix3=matrix3.*xd; 
%Multiply matrix with xd so that the  value of the wavelet transform at local maxima can 
%be known for future computation to know at what value of translation b is the max of 
%the tranform achieved. 
 
[matrix3 allindexmax]=sort(matrix3,1); 
maxrow=size(allindexmax,1);%Get the last row index 
indexmax(a,:) = allindexmax(maxrow,:); 
%This gives the postition of the highest local maxima only 
            
end %End computing in a - dilation axis. 
 
%Compute the Global Max and 2nd local maxima of d2 
        [val,amaxindex]=max(d2,[],1); 
        amaxindex2 = computelocalmaxima(d2,1,2); 
          
         
        %Now compute the local max of d2 
        for i=1:col 
            blayerheight(i)=indexmax(amaxindex(i),i); 
            blayerheight2(i) = indexmax(amaxindex2(i),i); 
        end 
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    %Spike suppression/smoothing 
    %This is for spike smoothing using mean filter 
    for i=5:col -3 
        if (blayerheight(i) > blayerheight(i-1) + 8) |(blayerheight(i) > blayerheight(i+1) + 8) 
            blayerheight(i) = mean(blayerheight(i-3) : blayerheight(i+3))/7; 
        end 
    end 
     
altitude=[37.5:75:(row-1)*75 + 37.5]; 
time=[1:col]*5; 
figure(3),pcolor(time,altitude,validmixingratio),shading 
interp,h1=get(gca,'CLim'),set(gca,'CLim',[0 14]),colorbar('horiz') 
%figure(1),pcolor(validmixingratio),shading interp,h1=get(gca,'CLim'),set(gca,'CLim',[0 
14]),colorbar('horiz') 
blayerheight = 75*[blayerheight + 1*ones(1,col)] -37.5*ones(1,col); 
blayerheight2 = 75*[blayerheight2 + 1*ones(1,col)] -37.5*ones(1,col); 
hold on, plot(time,blayerheight,'b*') 
hold on,plot(time,blayerheight2,'b*') 
xlabel('Time in minutes') 
ylabel('Altitude in metres') 
title('Boundary layer depth using wavelet transform approach') 
 

************************************************************************ 

************************************************************************ 

%blayerheight5.m 
%Detects Boundary layer gradients by Edge Detection techniques. 
%Output of the program is stored as variable file to be used by bellmanmanylayers2.m 
%Operates on the matrix instead of image obtained. 
%refer Digital Image Processing by Gonzales and Woods 
%Preprocessing by Median Filter to enhance edges. 
 
clear all 
close all 
load variables98; 
 [row,col]=size(validmixingratio); 
 
%Edge Detection of Entire image using matlab edge function use LoG mask 
 
%Simple edge detection using contourf function 
contour(validmixingratio); %colormap('gray'); 
set(gca,'CLim',[0 14]); 
set(gca,'Visible','off'); 

 



 85

print -dtiff test; 
i=imread('test.tif'); 
ig=rgb2gray(i); 
e=edge(ig,'log',0,0.5); 
imshow(e); 
[row,col]=find(e > 0); 
ee=e(min(row)+1:max(row)-1,min(col)+1:max(col)-1); 
%Remove the background which has no points 
%remove edges which are due to clipping due to altitude or signal loss 
[row,col]=find(ee > 0); 
ee(1:min(row)+5,:)=0; 
%count= min(row) + 5; 
%save edgevariables ee validmixingratio ig  plotData plotDataStddev plotStartTime 
plotEndTime; 
save edgevariables ee validmixingratio ig  plotData plotDataStddev ; 
 
 
 [r,c]=size(ee); 
altitude=[37.5:75:(r-1)*75 + 37.5]; 
time=[1:c]*5; 
set(gca,'Visible','on'); 
 
************************************************************************    
         
  
  
************************************************************************ 
 
%Bellmanmanylayers2.m 
%Implements Bellman’s Optimality Principle for edge following. 
%Assumes 5 minute steps. 
%Accepts variables from output of blayerheight5.m 
 
clear all;close all; 
load('edgevariables'); 
ee=im2double(flipud(ee)); 
ee=ee(15:size(ee,1),:); 
 
count = 0; 
D=inf*ones(size(ee)); 
D(:,1)=ee(:,1);%matrix of distance 
I=zeros(size(ee));%matrix of indices of previous column  
flag = 0; 
num_layers=40; 
 
for i=2:size(ee,2) 
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    index_present=find(ee(:,i) ~= 0); 
    if isempty(index_present) 
        continue 
    end 
    flag=0; 
    index_previous=find(ee(:,i-1) ~= 0); 
    if isempty(index_previous) 
        flag=1; 
    end 
     
    for j=1:length(index_present) 
        if flag == 0 
      [val,index]=min(abs(index_present(j)*ones(size(index_previous)) - index_previous)); 
      I(index_present(j),i)=index_previous(index); 
      D(index_present(j),i)=D(index_previous(index),i-1) + sqrt(1 + (index_present(j) - 
index_previous(index)).^2); 
                 
        else 
            D(index_present(j),i)=1; 
        end 
             
    end 
end 
 
[dummydistance,blayerindices] = sort(D(:,size(ee,2))); 
for times=1:num_layers 
    if I(blayerindices(times),size(ee,2)) == 0 
        break 
    end 
    blayer(size(ee,2)) = I(blayerindices(times),size(ee,2)); 
    for i=size(ee,2)-1:-1:2 
           blayer(i) = I(max(blayer(i+1),1),i); 
    end 
    yaxis=[1:size(ee,1)]*75 - 37.5*ones(1,size(ee,1)) + (count + 10)*ones(1,size(ee,1)); 
    num_mins = size(ee,2)*5; 
    xaxis=[1:num_mins/size(ee,2):num_mins]; 
    allblayers(times,:)=blayer; 
    clear blayer; 
 end %End of times loop 
  
 %Now convert height in pixel to height in altitude indices of validmixingratio 
[matrixrows,matrixcols] = size(validmixingratio); 
[imagerows,imagecols] = size(ee); 
altituderatio = matrixrows/imagerows; 
allblayers=allblayers*altituderatio; 
timeratio = imagecols/matrixcols; 

 



 87

inttimeratio = round(timeratio*1000); 
for i = 1: size(allblayers,1) 
    newallblayers(i,:) = resample(allblayers(i,:),1000,inttimeratio); 
 
end 
ground_altitude = 10; 
altitude = [1:size(validmixingratio,1)]*37.5 + 
ground_altitude*ones(1,size(validmixingratio,1)); 
 
%Now start plotting 
minStep=datenum(2000,1,1,1,2,0)-datenum(2000,1,1,1,1,0);   % the actual number for 
one minute is best found this way     
step = 1 %Assumes 5 minute steps 
datestr(plotStartTime, 15) ' - ' datestr(plotEndTime, 15) ' UTC']; 
xaxis = [1:size(validmixingratio,2)]*5; 
%Y axis labeling 
yaxiscoefficient = [1:size(validmixingratio,1)]*75 - 
29.5*ones(1,size(validmixingratio,1)); 
yaxis = yaxis(2:length(yaxis)); 
maxAlt = 5000; 
remainder = mod(maxAlt,1000); 
loweredAlt = maxAlt - remainder; 
htindexmultiple = (1000/maxAlt)*size(validmixingratio,1) ; 
 
pcolor(validmixingratio(2:size(validmixingratio,1),:)),set(gca,'CLim',[0 14]),shading 
interp 
hold on, plot(newallblayers(1,:),'k*') 
%pcolor(validmixingratio),set(gca,'CLim',[0 14]),shading interp,hold on, 
plot(newallblayers(2,:),'k*') 
hold on, plot(newallblayers(2,:),'k*') 
hold on, plot(newallblayers(3,:),'k*') 
%hold on, plot(newallblayers(15,:),'k*') 
h=get(gca,'XTickLabel'); 
set(gca,'XTickLabel',datestr( minStep*step.*str2num(h)+plotStartTime,15)); 
h=get(gca,'YTicklabel'); 
set(gca,'YTickLabel',num2str(str2num(h)*75 - 30*ones(size(h,1),1)));%75 - (75/2 + 8 = 
45.5) = 30 
name=['Time Sequence of Water Vapor: ' datestr(plotStartTime, 23) ' ' 
datestr(plotStartTime, 15) ' - ' datestr(plotEndTime, 15) ' UTC']; 
title(name) 
xlabel('Time in HH:MM') 
ylabel('Altitude in m') 
barhan=colorbar('horiz'); 
axes(barhan); 
h=xlabel('Water Vapor g/kg'); 
set(h,'FontName','Times New Roman','FontSize',12) 
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************************************************************************ 
    
 
      
************************************************************************ 
%-------------------------------------------------------- 
%  Program:       Reads and outputs WV Data 
%  Programmed By: Steve Esposito  
% 
% Program changed on 09\13\98 - Steven Esposito 
% Changes for clipping the data at the top of the plot.   
% This file reads the data from the files from the LAPS_DSP 
% program and outputs three arrays containing the altitude, 
% signal and error.  Use program in conjunction with tsplotDataclip.m 
% 
% 
% changed 09/18/98 to pick off name from file list 
% 
% Changed 10/6/98 to accomodate for gui inputs - run plotDataer.m first for 
%   graphic user interface 
% 
% 
%  A. A. 5/25/2000 Changed to make the program form the file list in the  
% system temp directory for reading from read-only dirs.   
%  A. A. 7/3/2000 Modified to add footer of information to plots 
%  A. A. 7/20/2000 Added hanning filter to smooth data if it goes below the 
%  cutoff value. 
% 
%  Sriram. N. Kizhakkemadam 05 May 2002. Changed it to store variables required 
%               to store variables required for blayerheight5   
%  Corey Slick  03 Mar 2001 Changed to make compatible with new gui (mainproc.m) 
%               which lets the user process temperature, ozone and water vapor  
%               from the same interface.    
%   Alex Achey  7/18/2001 Changed to use new processed data reading function 
%               Also introduced a new plotting method in the code which plots 
%               only valid points and will not force plotting of low altitudes 
%               or skip valid high altitudes which have a high error point before them. 
%   AA 7/24/01  Modified to do automatic saving of plots as specified in the GUI 
%-------------------------------------------------------- 
 
 
 
function tsplotData_new 
  
 %  Time sequence UV plotDataer vapor data program accepting files from Laps_Dsp  
 %  program. 
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clear all; 
set(0,'ShowHiddenHandles','on') 
  
% Getting the inputs from the Graphical user interface screen 
  
figureH = findobj('Tag','mainproc'); 
  
HH = findobj(figureH,'Tag','maxWatContVal');  
maxval = str2num(get(HH,'String'));  
HH = findobj(figureH,'Tag','minWatContVal');  
minval = str2num(get(HH,'String'));  
HH = findobj(figureH,'Tag','maxAlt');  
maxalt = str2num(get(HH,'String')); 
HH = findobj(figureH,'Tag','IntTime');  
int = str2num(get(HH,'String'));  
HH = findobj(figureH,'Tag','StepTime');  
step = str2num(get(HH,'String'));  
 HH = findobj(figureH,'Tag','TimeZone');  
 TZ = (get(HH,'value')); 
  
HH = findobj(figureH,'Tag','WatSigClip'); 
sig_clip = str2num(get(HH,'String')); 
 
HH = findobj(figureH,'Tag','WatAlaska'); 
unit = (get(HH,'value')); 
 
HH = findobj(figureH,'Tag','WatSmooth'); 
smooth = (get(HH,'value')); 
 
HH = findobj(figureH,'Tag','AutoSavePlots'); 
autosaveplots = (get(HH,'value')); 
HH = findobj(figureH,'Tag','PlotSavePath'); 
PlotSavePath = (get(HH,'String')); 
 
HH = findobj(figureH,'Tag','edit_start_yr'); 
start_year = str2num((get(HH,'String'))); 
HH = findobj(figureH,'Tag','edit_start_mo'); 
start_month  = str2num((get(HH,'String'))); 
HH = findobj(figureH,'Tag','edit_start_day'); 
start_day  = str2num((get(HH,'String'))); 
HH = findobj(figureH,'Tag','edit_start_hr'); 
start_hour  = str2num((get(HH,'String'))); 
HH = findobj(figureH,'Tag','edit_start_min'); 
start_min  = str2num((get(HH,'String'))); 
HH = findobj(figureH,'Tag','edit_plot_length_hrs'); 
plot_time_len = str2num((get(HH,'String'))); 
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HH = findobj(figureH,'Tag','edit_base_path'); 
data_files_path = (get(HH,'String')); 
 
 
% maximum width for the hanning filter if we are filtering the data 
maxFiltWidth=5; 
 
switch TZ 
    case 1 
       TZ=['UTC']; 
    case 2 
       TZ=['AST']; 
    case 3    
       TZ=['PDT']; 
    case 4 
       TZ=['PST']; 
    case 5 
       TZ=['EDT']; 
    case 6 
       TZ=['EST']; 
    end   
     
     
    %%%% 
    % establish the starting and ending times of the plot and of the data files needed.  They 
are different because 
    % the proc file named for, say, 6:29 is the integration from 6:00 to 6:29 at 30 min 
integration. 
    % so, the 'filesStartTime' is the ending time of the integration period in the first file 
    plotStartTime=datenum(start_year, start_month, start_day, start_hour, start_min, 0);      
    filesStartTime=datenum(start_year, start_month, start_day, start_hour, start_min+int, 
0);    
    plotEndTime=plotStartTime+datenum(0,0,0,plot_time_len,0,0);   
    filesEndTime=filesStartTime+datenum(0,0,0,plot_time_len,0,0);       
     
    %%%% 
    % Read in the files 
    disp(['looking from ' datestr(filesStartTime,0) ' to ' datestr(filesEndTime,0) ' in ' 
data_files_path]); 
     
    [procDataSeriesArray, 
success]=GetProcDataSeries(data_files_path,filesStartTime,filesEndTime); 
    size(procDataSeriesArray) 
    if(success == 0) 
        disp('no files found to plot!'); 
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        break; 
    end; 
         
    %%%% 
    % from the array of minutes structures, create an array of plotting data.  Include 
"blank" times where needed 
    % by skipping places where there's no data         
    maxAltBinIdx=max( find(procDataSeriesArray(1).Altitude(:) <= maxalt ) );    %what's 
the highest bin to read? 
    minStep=datenum(2000,1,1,1,2,0)-datenum(2000,1,1,1,1,0);   % the actual number for 
one minute is best found this way     
    numPlotCols=floor( (filesEndTime-filesStartTime) /(step * minStep) )+1;  % how 
many collumns should there be total 
    %init Alt to alt of any processed data period...they're all the same 
    for (place = 1 : numPlotCols )     
        Alt(:,place)=procDataSeriesArray(1).Altitude(1:maxAltBinIdx)'; 
    end; 
    %init other arrays to 0's for blank times 
    plotData=zeros(maxAltBinIdx,numPlotCols);    
    plotDataStddev=zeros(maxAltBinIdx,numPlotCols); 
  
    %place the periods of data into the arrays as appropriate 
    for (currMin = 1 :size(procDataSeriesArray,2) ) 
       place=floor( (procDataSeriesArray(currMin).dateNumValueEnd-filesStartTime) / 
(step * minStep) )+1; % +1 since 1 based arrays 
       Alt(:,place)=procDataSeriesArray(currMin).Altitude(1:maxAltBinIdx)'; 
       plotData(:,place)=procDataSeriesArray(currMin).CombWV(1:maxAltBinIdx)';      
       
plotDataStddev(:,place)=procDataSeriesArray(currMin).CombWVSdev(1:maxAltBinIdx
)';    
    end;           
    %%%%%%%%%%%%%%%%%%%%%%%%%         
     
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
 %smoothing using a hanning filter 
 if smooth==1;  
       disp('doing smoothing'); 
    clear a; 
       a=size(Alt);               
       % preset this here so the top and bottom that the loop excludes due to filter width 
will get filled 
       newplotData=plotData; 
       newplotDataSigma=plotDataStddev; 
       filtLevels=zeros(a(2)); 
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  for minute=1:(a(2)) 
          for altBin=ceil(maxFiltWidth/2):(a(1)-1)  % start above filter width 
             % if the error is above our clip value, keep trying larger filters until we hit our 
limit 
             % or we're too close to the top of the image 
             filtWidth=3; 
              
             while( ( plotDataStddev(altBin,minute) > sig_clip*plotData(altBin,minute) ) & ... 
                (maxFiltWidth >= filtWidth) & ... 
                (altBin <= a(1)-floor(filtWidth/2) ) )         
                   
                %set the filter alt level for this minute if it's not already set 
                if(filtLevels(minute) == 0) 
                 filtLevels(minute) = Alt(altBin,minute);                
                end;           
                    
               filt=hanning(filtWidth)/sum(hanning(filtWidth));  %normalized hanning filter 
numbers             
                newWVLevel = 0; 
                newWVSigma = 0; 
                for( i=1:filtWidth) 
                   newWVLevel = newWVLevel + (plotData(altBin-ceil(filtWidth/2)+i,minute) 
* filt(i)) ;                
                   newWVSigma = newWVSigma + ( filt(i) * plotDataStddev(altBin-
ceil(filtWidth/2)+i,minute) ) ^ 2; % from propogation of errors 
                end;   
                newWVSigma = newWVSigma ^ 0.5; % from propogation of errors 
                   
                filtWidth=filtWidth+2; 
                 
                % update the new filtered data set 
                newplotData(altBin,minute) = newWVLevel;   
                newplotDataSigma(altBin,minute) = newWVSigma;    
             end; % end of while loop                  
          end % end of for altBin 
       end   %end of for minute 
        
       % copy the filtered data into the working set 
       plotData=newplotData; 
       plotDataStddev=newplotDataSigma;   
 end        
    % done with smoothing 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
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    hPlotFigure = figure; 
    %  create an overall axes to position text in, then the plot axes 
    hTextAxes=axes('Position',[0 0 1 1],'Visible','off'); 
    axes('Position',[.1 .15 .82 .74]);     
    a=size(Alt);     
     
    % select which plotting routine 
 if(1==0) 
        for (j=1:size(plotData,2) - 1) 
            %%%% 
            % is there valid info for this column?     
            if (    ~isempty( find(plotData(:,j) ~=-99 & plotDataStddev(:,j) ~= 0 ) ) |... 
                    ~isempty( find(plotData(:,j) ~=  0 & plotDataStddev(:,j) ~= 0 ) )  ) 
                for i=6:maxAltBinIdx  
                    %%%% 
                    % if we hit the top of valid data, then plot this column.  We have to stop if  
                    % the next minute is 0 err at this altitude because that's the right hand side 
                    % of our 'square'   
                    if ( plotDataStddev(i,j)>(sig_clip*plotData(i,j)) | plotDataStddev(i,j)==0 | 
plotDataStddev(i,j+1)==0 | i==maxAltBinIdx); 
                        % only plot if the next minute has any valid info in it( i.e. non-missing)  
otherwise 
                        % we will get a 'rampdown' to the 0's of the next (missing) minute due to 
interpolation 
                        if(plotDataStddev(1,j+1)~=0 ) 
                            pcolor( [j j+1],[Alt(1:(i-1),j) Alt(1:(i-1),j)], [plotData(1:(i-1),j) 
plotData(1:(i-1),j+1)]); 
                            hold on; 
                        end;               
                        break;  %exit the loop for this column(minute) 
                    end; 
                end; 
            end; 
        end; 
         
 else 
        for (j=1:size(plotData,2) - 1) 
            for i=2:maxAltBinIdx-1 
                if(   1==validDataPt(plotData(i,j),   plotDataStddev(i,j),   sig_clip*plotData(i,j)) 
& ... 
                      1==validDataPt(plotData(i,j+1), plotDataStddev(i,j+1), 
sig_clip*plotData(i,j+1))& ... 
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                      1==validDataPt(plotData(i+1,j), plotDataStddev(i+1,j), 
sig_clip*plotData(i+1,j))& ... 
                      1==validDataPt(plotData(i+1,j+1), plotDataStddev(i+1,j+1), 
sig_clip*plotData(i+1,j+1)) )                 
                    pcolor( ([j j+1]),[Alt(i-1:i,j) Alt(i-1:i,j+1)], [plotData(i-1:i,j) plotData(i-
1:i,j+1)]); 
                    validmixingratio(i,j)=plotData(i,j); 
                     %disp('hi') 
                    hold on; 
                end; 
            end; 
        end; 
 end; 
    
    
filename=strcat(num2str(start_year),num2str(start_month),num2str(start_day),num2str(st
art_hour)); 
   filename = strcat('K:\sriramthesis\sriram\variables',filename,'.mat'); 
   
save(filename,'plotData','plotDataStddev','validmixingratio','plotStartTime','plotEndTime'
,'maxalt'); 
   cd('i:\sriram\homermatlabfiles\matlabfiles') 
 %   save 'K:\sriramthesis\sriram\variables.mat' plotData plotDataStddev 
validmixingratio; 
    axis([1 a(2) Alt(1,1) Alt(a(1),1)]) 
      
    shading interp; 
     
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
    %set the contour limits 
    h1=get(gca,'CLim'); 
    if( minval == -99) 
       minval = h1(1); 
    end; 
    if( maxval == -99) 
       maxval = h1(2); 
    end; 
    set(gca,'CLim',[minval  maxval]);   
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% 
 
     
    barhan=colorbar('horiz'); 
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    axhan=gca; 
       
    name=['Time Sequence of Water Vapor: ' datestr(plotStartTime, 23) ' ' 
datestr(plotStartTime, 15) ' - ' datestr(plotEndTime, 15) ' UTC']; 
    h=title(name); 
     
    set(h,'FontName','Times New Roman','FontSize',14) 
    h=xlabel('Time'); 
    set(h,'FontName','Times New Roman','FontSize',10) 
    h=ylabel('Altitude (m)'); 
    set(h,'FontName','Times New Roman','FontSize',10) 
    axes(barhan); 
    h=xlabel('Water Vapor g/kg'); 
    set(h,'FontName','Times New Roman','FontSize',12) 
    axes(axhan); 
 
    h=get(gca,'XTickLabel'); 
    set(gca,'XTickLabel',datestr( minStep*step.*str2num(h)+plotStartTime,15 )); 
      
    %%%%% 
    % set up footer of paramaters 
    set(hPlotFigure,'CurrentAxes',hTextAxes); 
     
    plotParamString=['signal cliped at error: ' 177 num2str(sig_clip*100) '%']; 
    h=text(0.05 ,0.03,plotParamString); 
    set(h,'FontName','Times New Roman','FontSize',8) 
     
    plotParamString=['plotted on: ' dateStr(now,2)]; 
    h=text(0.05 ,0.06,plotParamString); 
    set(h,'FontName','Times New Roman','FontSize',8) 
     
    if( mod(int,2) == 1) 
        plotParamString=['integration period: ' num2str(int*2) 'm']; 
    else 
         plotParamString=['integration period: ' num2str(int*2+1) 'm']; 
    end;         
    h=text(0.35 ,0.03,plotParamString); 
    set(h,'FontName','Times New Roman','FontSize',8) 
     
    plotParamString=['step size: ' num2str(step) 'm']; 
    h=text(0.35 ,0.06,plotParamString); 
    set(h,'FontName','Times New Roman','FontSize',8) 
     

if smooth==1;  
       plotParamString=['using hanning filter, max width: ' num2str(maxFiltWidth)] 

                   h=text(0.65 ,0.02,plotParamString); 
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                   set(h,'fontname','timesnewroman','fontsize',8) 
           end; 
     
    % done with footer 
    %%%%%%%%    
     
    % save plot if we're supposed to 
    if(autosaveplots) 
        [ySt moSt daSt hrSt minSt secSt]=datevec(plotStartTime); 
        [yEnd moEnd daEnd hrEnd minEnd secEnd]=datevec(plotEndTime); 
        plotfilename = 
sprintf('%s\\%02d%02d%02d%02d%02d_%02d%02d_wat.tif',PlotSavePath,mod(ySt,10
0), moSt, daSt, hrSt, minSt, hrEnd, minEnd);    
        eval(['print -dtiff ' plotfilename]) 
    end; 
 
    setptr(1,'arrow');     
    setptr(figureH,'arrow');    
     
     
%%%% 
% little function to determine if a data point is valid or not 
function [isValid]=validDataPt(value, stdev, cutoffStddev) 
    if( (value==-99 & stdev==0) | (value==0 & stdev==0) | (cutoffStddev < stdev) ) 
        isValid=0; 
    else 
        isValid=1; 
    end; 
     
 
************************************************************************ 
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